A mechanism for biologically induced iodine emissions from sea ice

Author:

Saiz-Lopez A.ORCID,Blaszczak-Boxe C. S.,Carpenter L. J.

Abstract

Abstract. Ground- and satellite-based measurements have reported high concentrations of iodine monoxide (IO) in coastal Antarctica. The sources of such a large iodine burden in the coastal Antarctic atmosphere remain unknown. We propose a mechanism for iodine release from sea ice based on the premise that micro-algae are the primary source of iodine emissions in this environment. The emissions are triggered by the biological production of iodide (I−) and hypoiodous acid (HOI) from micro-algae (contained within and underneath sea ice) and their diffusion through sea-ice brine channels, ultimately accumulating in a thin brine layer (BL) on the surface of sea ice. Prior to reaching the BL, the diffusion timescale of iodine within sea ice is depth-dependent. The BL is also a vital component of the proposed mechanism as it enhances the chemical kinetics of iodine-related reactions, which allows for the efficient release of iodine to the polar boundary layer. We suggest that iodine is released to the atmosphere via three possible pathways: (1) emitted from the BL and then transported throughout snow atop sea ice, from where it is released to the atmosphere; (2) released directly from the BL to the atmosphere in regions of sea ice that are not covered with snowpack; or (3) emitted to the atmosphere directly through fractures in the sea-ice pack. To investigate the proposed biology–ice–atmosphere coupling at coastal Antarctica we use a multiphase model that incorporates the transport of iodine species, via diffusion, at variable depths, within brine channels of sea ice. Model simulations were conducted to interpret observations of elevated springtime IO in the coastal Antarctic, around the Weddell Sea. While a lack of experimental and observational data adds uncertainty to the model predictions, the results nevertheless show that the levels of inorganic iodine (i.e. I2, IBr, ICl) released from sea ice through this mechanism could account for the observed IO concentrations during this timeframe. The model results also indicate that iodine may trigger the catalytic release of bromine from sea ice through phase equilibration of IBr. Considering the extent of sea ice around the Antarctic continent, we suggest that the resulting high levels of iodine may have widespread impacts on catalytic ozone destruction and aerosol formation in the Antarctic lower troposphere.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3