A mechanism for biologically induced iodine emissions from sea ice
-
Published:2015-09-01
Issue:17
Volume:15
Page:9731-9746
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Saiz-Lopez A.ORCID, Blaszczak-Boxe C. S., Carpenter L. J.
Abstract
Abstract. Ground- and satellite-based measurements have reported high concentrations of iodine monoxide (IO) in coastal Antarctica. The sources of such a large iodine burden in the coastal Antarctic atmosphere remain unknown. We propose a mechanism for iodine release from sea ice based on the premise that micro-algae are the primary source of iodine emissions in this environment. The emissions are triggered by the biological production of iodide (I−) and hypoiodous acid (HOI) from micro-algae (contained within and underneath sea ice) and their diffusion through sea-ice brine channels, ultimately accumulating in a thin brine layer (BL) on the surface of sea ice. Prior to reaching the BL, the diffusion timescale of iodine within sea ice is depth-dependent. The BL is also a vital component of the proposed mechanism as it enhances the chemical kinetics of iodine-related reactions, which allows for the efficient release of iodine to the polar boundary layer. We suggest that iodine is released to the atmosphere via three possible pathways: (1) emitted from the BL and then transported throughout snow atop sea ice, from where it is released to the atmosphere; (2) released directly from the BL to the atmosphere in regions of sea ice that are not covered with snowpack; or (3) emitted to the atmosphere directly through fractures in the sea-ice pack. To investigate the proposed biology–ice–atmosphere coupling at coastal Antarctica we use a multiphase model that incorporates the transport of iodine species, via diffusion, at variable depths, within brine channels of sea ice. Model simulations were conducted to interpret observations of elevated springtime IO in the coastal Antarctic, around the Weddell Sea. While a lack of experimental and observational data adds uncertainty to the model predictions, the results nevertheless show that the levels of inorganic iodine (i.e. I2, IBr, ICl) released from sea ice through this mechanism could account for the observed IO concentrations during this timeframe. The model results also indicate that iodine may trigger the catalytic release of bromine from sea ice through phase equilibration of IBr. Considering the extent of sea ice around the Antarctic continent, we suggest that the resulting high levels of iodine may have widespread impacts on catalytic ozone destruction and aerosol formation in the Antarctic lower troposphere.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference132 articles.
1. Allan, J. D., Williams, P. I., Najera, J., Whitehead, J. D., Flynn, M. J., Taylor, J. W., Liu, D., Darbyshire, E., Carpenter, L. J., Chance, R., Andrews, S. J., Hackenberg, S. C., and McFiggans, G.: Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA, Atmos. Chem. Phys., 15, 5599–5609, https://doi.org/10.5194/acp-15-5599-2015, 2015. 2. Anastasio, C., Galbavy, E. S., Hutterli, M. A., Burkhart, J. F., and Friel, D. K.: Photoformation of hydroxil radical on snow grains at Summit, Greenland, Atmos. Environ., 41, 5110–5121, 2007. 3. Arrigo, K. R. and Sullivan, C. W.: The influence of salinity and temperature covariation on the photophysiological characteristics of Antarctic sea ice microalgae, J. Phycol., 28, 746–756, 1992. reenland, Atmos. Environ., 41, 5110–5121, 2007. 4. Arrigo, K. R. and Thomas, D. N.: Large scale importance of sea ice biology in the Souther Ocean, Antarctic Science, 16, 471–486, 2004. 5. Atkinson, H. M., Huang, R.-J., Chance, R., Roscoe, H. K., Hughes, C., Davison, B., Schönhardt, A., Mahajan, A. S., Saiz-Lopez, A., Hoffmann, T. and Liss, P. S.: Iodine emissions from the sea ice of the Weddell Sea, Atmos. Chem. Phys., 12, 4–6, https://doi.org/10.5194/acpd-12-11595-2012, 2012.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|