Large scale importance of sea ice biology in the Southern Ocean

Author:

ARRIGO KEVIN R.,THOMAS DAVID N.

Abstract

Despite being one of the largest biomes on earth, sea ice ecosystems have only received intensive study over the past 30 years. Sea ice is a unique habitat for assemblages of bacteria, algae, protists, and invertebrates that grow within a matrix dominated by strong gradients in temperature, salinity, nutrients, and UV and visible radiation. A suite of physiological adaptations allow these organisms to thrive in ice, where their enormous biomass makes them a fundamental component of polar ecosystems. Sea ice algae are an important energy and nutritional source for invertebrates such as juvenile krill, accounting for up to 25% of total annual primary production in ice-covered waters. The ability of ice algae to produce large amounts of UV absorbing compounds such as mycosporine-like amino acids makes them even more important to organisms like krill that can incorporate these sunscreens into their own tissues. Furthermore, the nutrient and light conditions in which sea ice algae thrive induce them to synthesize enhanced concentrations of polyunsaturated fatty acids, a vital constituent of the diet of grazing organisms, especially during winter. Finally, sea ice bacteria and algae have become the focus of biotechnology, and are being considered as proxies of possible life forms on ice-covered extraterrestrial systems. An analysis of how the balance between sea ice and pelagic production might change under a warming scenario indicates that when current levels of primary production and changes in the areas of sea ice habitats are taken into account, the expected 25% loss of sea ice over the next century would increase primary production in the Southern Ocean by approximately 10%, resulting in a slight negative feedback on climate warming.

Publisher

Cambridge University Press (CUP)

Subject

Geology,Ecology, Evolution, Behavior and Systematics,Oceanography

Cited by 218 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3