Iodine chemistry in the chemistry–climate model SOCOL-AERv2-I
-
Published:2021-10-29
Issue:10
Volume:14
Page:6623-6645
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Karagodin-Doyennel Arseniy, Rozanov EugeneORCID, Sukhodolov Timofei, Egorova TatianaORCID, Saiz-Lopez AlfonsoORCID, Cuevas Carlos A., Fernandez Rafael P.ORCID, Sherwen TomásORCID, Volkamer RainerORCID, Koenig Theodore K.ORCID, Giroud Tanguy, Peter Thomas
Abstract
Abstract. In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. This reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Reference108 articles.
1. Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S.,
Inguaggiato, S., Liuzzo, M., McGonigle, A. J. S., and Valenza, M.:
Emission of bromine and iodine from Mount Etna volcano,
Geochem. Geophy. Geosy., 6, Q08008, https://doi.org/10.1029/2005GC000965, 2005. a, b 2. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011. a 3. Archibald, A., Turnock, S., Griffiths, P., Cox, T., Derwent, R. G.,
Knote, C., and Shin, M.: On the changes in surface ozone over the
twenty-first century: sensitivity to changes in surface temperature and
chemical mechanisms, Philos. T. Roy. Soc. A, 378, 20190329,
https://doi.org/10.1098/rsta.2019.0329, 2020. a, b 4. Aschmann, J. and Sinnhuber, B.-M.: Contribution of very short-lived substances to stratospheric bromine loading: uncertainties and constraints, Atmos. Chem. Phys., 13, 1203–1219, https://doi.org/10.5194/acp-13-1203-2013, 2013. a 5. Baccarini, A., Karlsson, L., Dommen, J., Duplessis, P., Vüllers,
J., Brooks, I. M., Saiz-Lopez, A., Salter, M., Tjernström, M.,
Baltensperger, U., Zieger, P., and Schmale, J.: Frequent new particle
formation over the high Arctic pack ice by enhanced iodine emissions, Nat. Commun., 11, 4924, https://doi.org/10.1038/s41467-020-18551-0, 2020. a
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|