Brief communication: Non-linear sensitivity of glacier mass balance to climate attested by temperature-index models
-
Published:2023-05-12
Issue:5
Volume:17
Page:1989-1995
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Vincent Christian, Thibert EmmanuelORCID
Abstract
Abstract. Temperature-index models have been widely used for glacier-mass projections spanning the 21st century. The ability of temperature-index models to capture non-linear responses of glacier surface mass balance (SMB) to high deviations in air temperature and solid precipitation was recently discussed in the context of mass-balance simulations employing advanced machine-learning techniques. Here, we performed numerical experiments with a classic temperature-index model and confirmed that such models are capable of detecting non-linear responses of glacier SMB to temperature and precipitation changes. Non-linearities derive from the change in the degree-day factor over the ablation season and from the lengthening of the ablation season.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference16 articles.
1. Agatonovic-Kustrin, S. and Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research, J. Pharmaceut. Biomed., 22, 5, https://doi.org/10.1016/s0731-7085(99)00272-1, 2000. 2. Bolibar, J., Rabatel, A., Gouttevin, I., Galiez, C., Condom, T., and Sauquet, E.: Deep learning applied to glacier evolution modelling, The Cryosphere, 14, 565–584, https://doi.org/10.5194/tc-14-565-2020, 2020. 3. Bolibar, J., Rabatel, A., Gouttevin, I., Zekollari, H., and Galiez, C.: Nonlinear sensitivity of glacier mass balance to future climate change unveiled by deep learning, Nat. Commun., 13, 409, https://doi.org/10.1038/s41467-022-28033-0, 2022. 4. Durand, Y., Laternser, M., Giraud, G., Etchevers, P., Lesaffre, B., and Mérindol, L.: Reanalysis of 44 yr of climate in the French Alps (1958–2002): Methodology, model validation, climatology, and trends for air temperature and precipitation, J. Appl. Meteorol. Clim., 48, 429–449, https://doi.org/10.1175/2008JAMC1808.1, 2009. 5. Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|