The impacts of assimilating Aeolus horizontal line-of-sight winds on numerical predictions of Hurricane Ida (2021) and a mesoscale convective system over the Atlantic Ocean

Author:

Feng ChengfengORCID,Pu ZhaoxiaORCID

Abstract

Abstract. The Aeolus satellite, the first spaceborne wind lidar launched by the European Space Agency (ESA) on 22 August 2018, provides global measurements of horizontal line-of-sight (HLOS) winds. The assimilation of Aeolus HLOS winds has been proven to improve numerical weather predictions (NWPs). Still, its influences on forecasts of tropical cyclones (TCs) and tropical convective systems have yet to be examined in detail. This study investigates the impacts of assimilating Aeolus HLOS winds on the analysis and forecasts of Hurricane Ida (2021) and a mesoscale convective system (MCS) embedded in an African easterly wave (AEW) over the Atlantic Ocean (AO) with the mesoscale community Weather Research and Forecasting (WRF) model and the NCEP Gridpoint Statistical Interpolation (GSI)-based three-dimensional ensemble-variational (3DEnVAR) hybrid data assimilation (DA) system. Mie-cloudy and Rayleigh-clear winds are assimilated. The results for Ida (2021) show that assimilating Aeolus HLOS winds leads to better track predictions. The intensity forecasts are improved in some cases, even with limited coverage of Aeolus HLOS winds within the inner core region of Ida (2021). In addition, the structure of heavy precipitation associated with Ida (2021) is refined after the assimilation of Aeolus HLOS winds. Further diagnosis demonstrates that the improved intensity and precipitation forecasts result from enhanced divergence in the upper level of the troposphere after the assimilation of Aeolus HLOS winds. Additional results from the MCS associated with an AEW indicate that assimilating Aeolus HLOS winds enhances forecasts of its precipitation structure and the associated low-level divergence. Findings from this study suggest that the assimilation of Aeolus HLOS winds has the potential to improve forecasts for TCs and tropical convective systems.

Funder

National Aeronautics and Space Administration

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3