Assimilating Aeolus Satellite Wind Data on a Regional Level: Application in a Mediterranean Cyclone Using the WRF Model

Author:

Stathopoulos Christos12,Chaniotis Ioannis12,Patlakas Platon12ORCID

Affiliation:

1. Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece

2. Weather and Marine Engineering Technologies P.C., 17456 Alimos, Greece

Abstract

This study uses a limited area model to improve the understanding of assimilating Aeolus Level 2B wind profiles on a regional level under severe weather conditions. Aeolus wind profile measurements have offered new insights into weather analysis and applications. The assimilation of Aeolus Level 2B winds has enhanced the observed state of the atmosphere spatially and temporally in global modeling systems. This work is focused on the development and evolution of a Mediterranean tropical-like cyclone that occurred between 27–30 September 2018. Aeolus coverage had a good spatial and temporal alignment with the broader area and time periods during which the cyclone originated and developed, affording the opportunity to explore the direct influence of Aeolus satellite retrievals in model initialization processes. Using the WRF 3DVar modeling system, model results showcase the effects stemming from Aeolus data ingestion, with the main differences presenting after the first 24 h of simulation. Smaller or larger deviations in the runs with and without the Aeolus wind data assimilation are evident in most cyclonic characteristics, extending vertically up to the mid-troposphere. The absence of a consistent trend in cyclone intensification or weakening underlines the unique impact of the Aeolus dataset in each case.

Funder

European Regional Development Fund of the European Union and Greek national funds

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3