Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah

Author:

Kaur KamaljeetORCID,Kelly Kerry E.ORCID

Abstract

Abstract. As the changing climate expands the extent of arid and semi-arid lands, the number of, severity of, and health effects associated with dust events are likely to increase. However, regulatory measurements capable of capturing dust (PM10, particulate matter smaller than 10 µm in diameter) are sparse, sparser than measurements of PM2.5 (PM smaller than 2.5 µm in diameter). Although low-cost sensors could supplement regulatory monitors, as numerous studies have shown for PM2.5 concentrations, most of these sensors are not effective at measuring PM10 despite claims by sensor manufacturers. This study focuses on the Salt Lake Valley, adjacent to the Great Salt Lake, which recently reached historic lows exposing 1865 km2 of dry lake bed. It evaluated the field performance of the Plantower PMS5003, a common low-cost PM sensor, and the Alphasense OPC-N3, a promising candidate for low-cost measurement of PM10, against a federal equivalent method (FEM, beta attenuation) and research measurements (GRIMM aerosol spectrometer model 1.109) at three different locations. During a month-long field study that included five dust events in the Salt Lake Valley with PM10 concentrations reaching 311 µg m−3, the OPC-N3 exhibited strong correlation with FEM PM10 measurements (R2 = 0.865, RMSE = 12.4 µg m−3) and GRIMM (R2 = 0.937, RMSE = 17.7 µg m−3). The PMS exhibited poor to moderate correlations (R2 < 0.49, RMSE = 33–45 µg m−3) with reference or research monitors and severely underestimated the PM10 concentrations (slope < 0.099) for PM10. We also evaluated a PM-ratio-based correction method to improve the estimated PM10 concentration from PMSs. After applying this method, PMS PM10 concentrations correlated reasonably well with FEM measurements (R2 > 0.63) and GRIMM measurements (R2 > 0.76), and the RMSE decreased to 15–25 µg m−3. Our results suggest that it may be possible to obtain better resolved spatial estimates of PM10 concentration using a combination of PMSs (often publicly available in communities) and measurements of PM2.5 and PM10, such as those provided by FEMs, research-grade instrumentation, or the OPC-N3.

Funder

Directorate for Geosciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3