Development of a Unified IoT Platform for Assessing Meteorological and Air Quality Data in a Tropical Environment

Author:

Kairuz-Cabrera David1,Hernandez-Rodriguez Victor1,Schalm Olivier2ORCID,Martinez Alain1ORCID,Laso Pedro Merino34ORCID,Alejo-Sánchez Daniellys1ORCID

Affiliation:

1. Faculty of Electrical Engineering, Central University Marta Abreu of Las Villas (UCLV), Santa Clara 54830, Cuba

2. Antwerp Maritime Academy (AMA), 2030 Antwerp, Belgium

3. French Maritime Academy (ENSM), 76600 Le Havre, France

4. Arts et Métiers Institute of Technology, École navale, IRENAV EA 3634, BCRM de Brest, CC 600, 29240 Brest cedex 9, France

Abstract

In developing nations, outdated technologies and sulfur-rich heavy fossil fuel usage are major contributors to air pollution, affecting urban air quality and public health. In addition, the limited resources hinder the adoption of advanced monitoring systems crucial for informed public health policies. This study addresses this challenge by introducing an affordable internet of things (IoT) monitoring system capable of tracking atmospheric pollutants and meteorological parameters. The IoT platform combines a Bresser 5-in-1 weather station with a previously developed air quality monitoring device equipped with Alphasense gas sensors. Utilizing MQTT, Node-RED, InfluxDB, and Grafana, a Raspberry Pi collects, processes, and visualizes the data it receives from the measuring device by LoRa. To validate system performance, a 15-day field campaign was conducted in Santa Clara, Cuba, using a Libelium Smart Environment Pro as a reference. The system, with a development cost several times lower than Libelium and measuring a greater number of variables, provided reliable data to address air quality issues and support health-related decision making, overcoming resource and budget constraints. The results showed that the IoT architecture has the capacity to process measurements in tropical conditions. The meteorological data provide deeper insights into events of poorer air quality.

Funder

Global Minds

French embassy in Cuba through the Hubert Curien Agreement entitled Carlos J. Finlay

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3