Invited review: Resource inputs and land, water and carbon footprints from the production of edible protein of animal origin

Author:

Flachowsky Gerhard,Meyer Ulrich,Südekum Karl-HeinzORCID

Abstract

Abstract. The objective of this review is to analyze crucial factors in the output from the production of proteins in food of animal origin, such as milk, meat and eggs. We then consider inputs such as land, water, fuel, minerals and feed, as well as characterize emissions. Finally, we estimate footprints for land (land footprint, LF), water (water footprint, WF) and greenhouse gas emissions (i.e., carbon footprint, CF) during the production process. The wide range of different land and water inputs per unit feed between various studies largely influences the results. Further influencing factors are species and categories of animals that produce edible protein, their yields and the feeding of animals. Coproducts with no or low humanly edible fractions and grassland as feed contribute to a lower need for arable land and lower LF, WF and CF. The most efficient land use or the lowest LF per kilogram of edible protein was estimated for higher milk and egg yields; the highest LF values were calculated for beef, followed by pork. The lowest WF and CF were calculated for edible protein of chicken meat and eggs. Edible protein from ruminants is mostly characterized by a higher CF because of the high greenhouse gas potential of methane produced in the rumen. A key prerequisite for further progress in this field is the harmonization of data collection and calculation methods. Alternatives to partial or complete replacement of protein of terrestrial animals, such as marine animals, insects, cell cultures, single-cell proteins or “simulated animal products” from plants, as well as changing eating patterns and reducing food losses are mentioned as further potential ways for more efficient feed production. For all those dealing with plant or animal breeding and cultivation and all those who are working along the whole food production chain, it is a major challenge to enhance the production of more food for more people with, at the same time, less, limited resources and lower emissions.

Publisher

Copernicus GmbH

Reference159 articles.

1. Ahlgrimm, H.-J., Böhme, H., Bramm, A., Dämmgen, U., Flachowsky, G., Höppner, F., Rogasik, J., and Sohler, S.: Bewertung von Verfahren der ökologischen und konventionellen landwirtschaftlichen Produktion im Hinblick auf den Energieeinsatz und bestimmte Schadgasemissionen: Studie als Sondergutachten im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Forsten, Bonn, edited by: Bockisch, F. J., Landbauforschung Völkenrode Sonderheft 211, Braunschweig, 206 pp., 2000.

2. Aiking, H.: Future protein supply, Trends Food Sci. Tech., 22, 112–120, https://doi.org/10.1016/j.tifs.2010.04.005, 2011.

3. Aiking, H.: Protein production: planet, profit, plus people?, Am. J. Clin. Nutr., 100, 483–489, https://doi.org/10.3945/ajcn.113.071209, 2014.

4. Anupama, P. R. and Ravindra, P.: Value-added food: single cell protein, Biotechnol. Adv., 18, 459–479, 2000.

5. Avadi, A. and Freon, P.: Life cycle assessment of fisheries: a review for fisheries scientists and managers, Fish Res., 143, 21–38, https://doi.org/10.1016/j.fishres.2013.01.006, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3