Hydrostreamer v1.0 – improved streamflow predictions for local applications from an ensemble of downscaled global runoff products

Author:

Kallio MarkoORCID,Guillaume Joseph H. A.,Virkki ViliORCID,Kummu MattiORCID,Virrantaus Kirsi

Abstract

Abstract. An increasing number of different types of hydrological, land surface, and rainfall–runoff models exist to estimate streamflow in river networks. Results from various model runs from global to local scales are readily available online. However, the usability of these products is often limited, as they often come aggregated in spatial units which are not compatible with the desired analysis purpose. We present here an R package, a software library Hydrostreamer v1.0, which aims to improve the usability of existing runoff products by addressing the modifiable area unit problem and allows non-experts with little knowledge of hydrology-specific modelling issues and methods to use them for their analyses. Hydrostreamer workflow includes (1) interpolation from source zones to target zones, (2) river routing, and (3) data assimilation via model averaging, given multiple input runoff and observation data. The software implements advanced areal interpolation methods and area-to-line interpolation not available in other products and is the first R package to provide vector-based routing. Hydrostreamer is kept as simple as possible – intuitive with minimal data requirements – and minimises the need for calibration. We tested the performance of Hydrostreamer by downscaling freely available coarse-resolution global runoff products from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) in an application in 3S Basin in Southeast Asia. Results are compared to observed discharges as well as two benchmark streamflow data products, finding comparable or improved performance. Hydrostreamer v1.0 is open source and is available from http://github.com/mkkallio/hydrostreamer/ (last access: 5 May 2021) under the MIT licence.

Funder

H2020 European Research Council

Emil Aaltosen Säätiö

Academy of Finland

Australian Research Council

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3