The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique
-
Published:2015-09-08
Issue:9
Volume:8
Page:3631-3645
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Lebsock M. D., Suzuki K.ORCID, Millán L. F., Kalmus P. M.
Abstract
Abstract. The feasibility of differential absorption radar (DAR) for the spaceborne remote profiling of water vapor within the cloudy boundary layer is assessed by applying a radar instrument simulator to large eddy simulations (LES). Frequencies near the 183 GHz water vapor absorption line attenuate too strongly to penetrate the large vapor concentrations that are ubiquitous in the boundary layer. However it is shown that lower frequencies between 140 and 170 GHz in the water vapor absorption continuum and on the wings of the absorption line, which are attenuated less efficiently than those near the line center, still have sufficient spectral variation of gaseous attenuation to perform sounding. The high resolution LES allow for assessment of the potential uncertainty in the method due to natural variability in thermodynamic and dynamic variables on scales smaller than the instrument field of view. The (160, 170) GHz frequency pair is suggested to best maximize signal for vapor profiling while minimizing noise due to undesired spectral variation in the target extinction properties. Precision in the derived water vapor is quantified as a function of the range resolution and the instrument precision. Assuming an observational spatial scale of 500 m vertical and 750 m full width at half maximum (FWHM) horizontal, measurement precision better that 1 g m−3 is achievable for stratocumulus scenes and 3 g m−3 for cumulus scenes given precision in radar reflectivity of 0.16 dBZ. Expected precision in the column water vapor (CWV) is achievable between 0.5 and 2 kg m−2 on these same spatial scales. Sampling efficiency is quantified as a function of radar sensitivity. Mean biases in CWV due to natural variability in the target extinction properties do not exceed 0.25 kg m−2. Potential biases due to uncertainty in the temperature and pressure profile are negligible relative to those resulting from natural variability. Assuming a −35 dBZ minimum detectable signal, 40 %(21.9 %) of stratocumulus(cumulus) atmospheric boundary layer range bins would be sampled. Simulated surface reflectivities are always greater than −5 dBZ, which implies the DAR technique could provide near spatially continuous observation of the CWV in subtropical boundary layers at a spatial resolution better than 1 km.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference36 articles.
1. Andersson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A., McNally, A. P., Simmons, A. J., Thépaut, J.-N., and Tompkins, A. M.: Analysis and forecast impact of the main humidity observing systems, Q. J. Roy. Meteor. Soc., 133, 1473–1485, https://doi.org/10.1002/qj.112, 2007. 2. Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., and Beyerle, G.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res.-Atmos., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003. 3. Betts, A. K. and Boers, R.: A Cloudiness Transition in a Marine Boundary Layer, J. Atmos. Sci., 47, 1480–1497, https://doi.org/10.1175/1520-0469(1990)0472.0.CO;2, 1990. 4. Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York, 477–482, 1983. 5. Browell, E. V., Wilkerson, T. D., and McIlrath, T. J.: Water vapor differential absorption lidar development and evaluation, Appl. Optics, 18, 3474, https://doi.org/10.1364/AO.18.003474, 1979.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|