Elements of future snowpack modeling – Part 1: A physical instability arising from the nonlinear coupling of transport and phase changes

Author:

Schürholt Konstantin,Kowalski Julia,Löwe HenningORCID

Abstract

Abstract. The incorporation of vapor transport has become a key demand for snowpack modeling in which accompanied phase changes give rise to a new, nonlinear coupling in the heat and mass equations. This coupling has an impact on choosing efficient numerical schemes for 1D snowpack models which are naturally not designed to cope with mathematical particularities of arbitrary, nonlinear partial differential equations (PDEs). To explore this coupling we have implemented a stand-alone finite element solution of the coupled heat and mass equations in snow using the computing platform FEniCS. We focus on the nonlinear feedback of the ice phase exchanging mass with a diffusing vapor phase with concurrent heat transport in the absence of settling. We demonstrate that existing continuum-mechanical models derived through homogenization or mixture theory yield similar results for homogeneous snowpacks of constant density. When snow density varies significantly with depth, we show that phase changes in the presence of temperature gradients give rise to nonlinear advection of the ice phase amplifying existing density variations. Eventually, this advection triggers a wave instability in the continuity equations. This is traced back to the density dependence of the effective transport coefficients as revealed by a linear stability analysis of the nonlinear PDE system. The instability is an inherent feature of existing continuum models and predicts, as a side product, the formation of a low-density (mechanical) weak layer on the sublimating side of an ice crust. The wave instability constitutes a key challenge for a faithful treatment of solid–vapor mass conservation between layers, which is discussed in view of the underlying homogenization schemes and their numerical solutions.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3