Impact of measured and simulated tundra snowpack properties on heat transfer
-
Published:2022-10-11
Issue:10
Volume:16
Page:4201-4222
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Dutch Victoria R.ORCID, Rutter NickORCID, Wake Leanne, Sandells MelodyORCID, Derksen ChrisORCID, Walker Branden, Hould Gosselin Gabriel, Sonnentag Oliver, Essery RichardORCID, Kelly Richard, Marsh Phillip, King Joshua, Boike JuliaORCID
Abstract
Abstract. Snowpack microstructure controls the transfer of heat to, as well as the
temperature of, the underlying soils. In situ measurements of snow and soil
properties from four field campaigns during two winters (March and November
2018, January and March 2019) were compared to an ensemble of CLM5.0
(Community Land Model) simulations, at Trail Valley Creek, Northwest
Territories, Canada. Snow micropenetrometer profiles allowed for snowpack
density and thermal conductivity to be derived at higher vertical resolution
(1.25 mm) and a larger sample size (n=1050) compared to traditional
snowpit observations (3 cm vertical resolution; n=115). Comparing
measurements with simulations shows CLM overestimated snow thermal
conductivity by a factor of 3, leading to a cold bias in wintertime soil
temperatures (RMSE=5.8 ∘C). Two different approaches were taken
to reduce this bias: alternative parameterisations of snow thermal
conductivity and the application of a correction factor. All the evaluated
parameterisations of snow thermal conductivity improved simulations of
wintertime soil temperatures, with that of Sturm et al. (1997)
having the greatest impact (RMSE=2.5 ∘C). The required
correction factor is strongly related to snow depth (R2=0.77,RMSE=0.066) and thus differs between the two snow seasons, limiting the
applicability of such an approach. Improving simulated snow properties and
the corresponding heat flux is important, as wintertime soil temperatures
are an important control on subnivean soil respiration and hence impact
Arctic winter carbon fluxes and budgets.
Funder
National Centre for Earth Observation
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference103 articles.
1. Anderson, E., A.: A point energy and mass balance model of a snow cover,
National Oceanic and Atmospheric Administration, NOAA technical report NWS, 19, Silver Spring, Maryland, USA, https://repository.library.noaa.gov/view/noaa/6392 (last access: 4 October 2022),
1976. 2. Barrere, M., Domine, F., Decharme, B., Morin, S., Vionnet, V., and Lafaysse, M.: Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site, Geosci. Model Dev., 10, 3461–3479, https://doi.org/10.5194/gmd-10-3461-2017, 2017. 3. Bartelt, P. and Lehning, M.: A physical SNOWPACK model for the Swiss
avalanche warning Part I: numerical model, Cold Reg. Sci.
Technol., 35, 123–145, https://doi.org/10.1016/S0165-232X(02)00074-5, 2001. 4. Benson, C. S. and Sturm, M.: Structure and wind transport of seasonal snow
on the Arctic slope of Alaska, Ann. Glaciol., 18, 261–267,
https://doi.org/10.3189/s0260305500011629, 1993. 5. Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkowicz, A. G.,
Abramov, A., Allard, M., Boike, J., Cable, W. L., Christiansen, H. H.,
Delaloye, R., Diekmann, B., Drozdov, D., Etzelmuller, B., Grosse, G.,
Guglielmin, M., Ingeman-Nielsen, T., Isaksen, K., Ishikawa, M., Johansson,
M., Johannsson, H., Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P.,
Kroger, T., Lambiel, C., Lanckman, J. P., Luo, D., Malkova, G., Meiklejohn,
I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel, A. B. K.,
Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A., Wu, Q., Yoshikawa, K.,
Zheleznyak, M., and Lantuit, H.: Permafrost is warming at a global scale,
Nat. Commun., 10, 264, https://doi.org/10.1038/s41467-018-08240-4, 2019.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|