ChAMBRe: a new atmospheric simulation chamber for aerosol modelling and bio-aerosol research

Author:

Massabò DarioORCID,Danelli Silvia Giulia,Brotto Paolo,Comite Antonio,Costa Camilla,Di Cesare Andrea,Doussin Jean FrançoisORCID,Ferraro Federico,Formenti PaolaORCID,Gatta Elena,Negretti Laura,Oliva Maddalena,Parodi Franco,Vezzulli Luigi,Prati PaoloORCID

Abstract

Abstract. Atmospheric simulation chambers are exploratory platforms used to study various atmospheric processes at realistic but controlled conditions. We describe here a new facility specifically designed for the research on atmospheric bio-aerosol as well as the protocols to produce, inject, expose and collect bio-aerosols. ChAMBRe (Chamber for Aerosol Modelling and Bio-aerosol Research) is installed at the Physics Department of the University of Genoa, Italy, and it is a node of the EUROCHAMP-2020 consortium. The chamber is made of stainless steel with a total volume of about 2.2 m3. The lifetime of aerosol particle with dimension from a few hundreds of nanometres to a few microns varies from about 2 to 10 h. Characteristic parts of the facility are the equipment and the procedures to grow, inject, and extract bacterial strains in the chamber volume while preserving their viability. Bacteria are part of the atmospheric ecosystem and have impact on several levels as: health related issues, cloud formation, and geochemistry. ChAMBRe will host experiments to study the bacterial viability vs. the air quality level, i.e. the atmospheric concentration of gaseous and aerosol pollutants. In this article, we report the results of the characterization tests as well as of the first experiments performed on two bacterial strains belonging to the Gram-positive and Gram-negative groups. A reproducibility at the 10 % level has been obtained in repeated injections and collection runs with a clean atmosphere, assessing this way the chamber sensitivity for systematic studies on bacterial viability vs. environmental conditions.

Funder

Horizon 2020

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3