Inventory of African desert dust events in the north-central Iberian Peninsula in 2003–2014 based on sun-photometer–AERONET and particulate-mass–EMEP data

Author:

Cachorro Victoria E.,Burgos Maria A.,Mateos DavidORCID,Toledano CarlosORCID,Bennouna Yasmine,Torres Benjamín,de Frutos Ángel M.,Herguedas Álvaro

Abstract

Abstract. A reliable identification of desert dust (DD) episodes over north-central Spain is carried out based on the AErosol RObotic NETwork (AERONET) columnar aerosol sun photometer (aerosol optical depth, AOD, and Ångström exponent, α) and European Monitoring and Evaluation Programme (EMEP) surface particulate-mass concentration (PMx, x = 10, 2.5, and 2.5–10 µm) as the main core data. The impact of DD on background aerosol conditions is detectable by means of aerosol load thresholds and complementary information provided by HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) air mass back trajectories, MODIS (Moderate Resolution Imaging Spectroradiometer) images, forecast aerosol models, and synoptic maps, which have been carefully reviewed by a human observer for each day included in the DD inventory. This identification method allows the detection of low and moderate DD intrusions and also of mixtures of mineral dust with other aerosol types by means of the analysis of α. During the period studied (2003–2014), a total of 152 DD episodes composed of 418 days are identified. Overall, this means ∼ 13 episodes and ∼ 35 days per year with DD intrusion, representing 9.5 % days year−1. During the identified DD intrusions, 19 daily exceedances over 50 µg m−3 are reported at the surface. The occurrence of DD event days during the year peaks in March and June, with a marked minimum in April and lowest occurrence in winter. A large interannual variability is observed showing a statistically significant temporal decreasing trend of ∼ 3 days year−1. The DD impact on the aerosol climatology is addressed by evaluating the DD contribution in magnitude and percent (in brackets) for AOD, PM10, PM2.5, and PM2.5 − 10, obtaining mean values of 0.015 (11.5 %), 1.3 µg m−3 (11.8 %), 0.55 µg m−3 (8.5 %) and 0.79 µg m−3 (16.1 %), respectively. Annual cycles of the DD contribution for AOD and PM10 present two maxima – one in summer (0.03 and 2.4 µg m−3 for AOD in June and PM10 in August) and another in March (0.02 for AOD and 2.2 µg m−3 for PM10) – both displaying a similar evolution with exceptions in July and September. The seasonal cycle of the DD contribution to AOD does not follow the pattern of the total AOD (close to a bell shape), whereas both PM10 cycles (total and DD contribution) are more similar to each other in shape, with an exception in September. The interannual evolution of the DD contribution to AOD and PM10 has evidenced a progressive decrease. This decline in the levels of mineral dust aerosols can explain up to 30 % of the total aerosol load decrease observed in the study area during the period 2003–2014. The relationship between columnar and surface DD contribution shows a correlation coefficient of 0.81 for the interannual averages. Finally, synoptic conditions during DD events are also analysed, observing that the north African thermal low causes most of the events ( ∼  53 %). The results presented in this study highlight the relevance of the area studied since it can be considered representative of the clean background in the western Mediterranean Basin where DD events have a high impact on aerosol load levels.

Funder

Ministerio de Economía y Competitividad

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference91 articles.

1. Aas, W., Espen Yttri, K., Stohl, A. , Lund Myhre, C., Karl, M., Tsyro, S., Marecková, K., Wankmüller, R., Klimont, Z., Heyes, C., Alastuey, A., Querol, X., Pérez, N., Moreno, T., Lucarelli, F., Areskoug, H., Balan, V., Cavalli, F., Putaud, J. P., Cape, J. N., Catrambone, M., Ceburnis, D., Conil, S., Gevorgyan, L., Jaffrezo, J. L., Hueglin, C., Mihalopoulos, N., Mitosinkova, M., Riffault, V., Sellegri, K., Spindler, G., Schuck, T., Pfeffer, U., Breuer, L., Adolfs, D., Chuntonova, L., Arabidze, M., and Abdulazizov, E.: Transboundary particulate matter in Europe Status report 2013, EMEP Report, 4/2013 (Ref. O-7726), 2013.

2. Alados-Arboledas, L., Lyamani, H., and Olmo, F. J.: Aerosol size properties at Armilla, Granada (Spain), Q. J. Roy. Meteor. Soc., 129, 1395–1413, https://doi.org/10.1256/qj.01.207, 2003.

3. Barmpadimos, I., Keller, J., Oderbolz, D., Hueglin, C., and Prévôt, A. S. H.: One decade of parallel fine (PM2.5) and coarse (PM10–PM2.5) particulate matter measurements in Europe: trends and variability, Atmos. Chem. Phys., 12, 3189–3203, https://doi.org/10.5194/acp-12-3189-2012, 2012.

4. Basart, S., Pérez, C., Cuevas, E., Baldasano, J. M., and Gobbi, G. P.: Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations, Atmos. Chem. Phys., 9, 8265–8282, https://doi.org/10.5194/acp-9-8265-2009, 2009.

5. Bègue, N., Tulet, P., Chaboureau, J. P., Roberts, G., Gomes, L., and Mallet, M.: Long-range transport of Saharan dust over northwestern Europe during EUCAARI 2008 campaign: Evolution of dust optical properties by scavenging, J. Geophys. Res., 117, D17201, https://doi.org/10.1029/2012JD017611, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3