One decade of parallel fine (PM<sub>2.5</sub>) and coarse (PM<sub>10</sub>–PM<sub>2.5</sub>) particulate matter measurements in Europe: trends and variability

Author:

Barmpadimos I.,Keller J.,Oderbolz D.,Hueglin C.,Prévôt A. S. H.

Abstract

Abstract. The trends and variability of PM10, PM2.5 and PMcoarse concentrations at seven urban and rural background stations in five European countries for the period between 1998 and 2010 were investigated. Collocated or nearby PM measurements and meteorological observations were used in order to construct Generalized Additive Models, which model the effect of each meteorological variable on PM concentrations. In agreement with previous findings, the most important meteorological variables affecting PM concentrations were wind speed, wind direction, boundary layer depth, precipitation, temperature and number of consecutive days with synoptic weather patterns that favor high PM concentrations. Temperature has a negative relationship to PM2.5 concentrations for low temperatures and a positive relationship for high temperatures. The stationary point of this relationship varies between 5 and 15 °C depending on the station. PMcoarse concentrations increase for increasing temperatures almost throughout the temperature range. Wind speed has a monotonic relationship to PM2.5 except for one station, which exhibits a stationary point. Considering PMcoarse, concentrations tend to increase or stabilize for large wind speeds at most stations. It was also observed that at all stations except one, higher PM2.5 concentrations occurred for east wind direction, compared to west wind direction. Meteorologically adjusted PM time series were produced by removing most of the PM variability due to meteorology. It was found that PM10 and PM2.5 concentrations decrease at most stations. The average trends of the raw and meteorologically adjusted data are −0.4 μg m−3 yr−1 for PM10 and PM2.5 size fractions. PMcoarse have much smaller trends and after averaging over all stations, no significant trend was detected at the 95% level of confidence. It is suggested that decreasing PMcoarse in addition to PM2.5 can result in a faster decrease of PM10 in the future. The trends of the 90th quantile of PM10 and PM2.5 concentrations were examined by quantile regression in order to detect long term changes in the occurrence of very large PM concentrations. The meteorologically adjusted trends of the 90th quantile were significantly larger (as an absolute value) on average over all stations (−0.6 μg m−3 yr−1).

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3