A model study of the impact of source gas changes on the stratosphere for 1850–2100

Author:

Fleming E. L.,Jackman C. H.,Stolarski R. S.,Douglass A. R.

Abstract

Abstract. The long-term stratospheric impacts due to emissions of CO2, CH4, N2O, and ozone depleting substances (ODSs) are investigated using an updated version of the Goddard two-dimensional (2-D) model. Perturbation simulations with the ODSs, CO2, CH4, and N2O varied individually are performed to isolate the relative roles of these gases in driving stratospheric changes over the 1850–2100 time period. We also show comparisons with observations and the Goddard Earth Observing System chemistry-climate model simulations for the time period 1960–2100 to illustrate that the 2-D model captures the basic processes responsible for long-term stratospheric change. The ODSs, CO2, CH4, and N2O impact ozone via several mechanisms. ODS and N2O loading decrease stratospheric ozone via the increases in atmospheric halogen and odd nitrogen species, respectively. CO2 loading impacts ozone by: (1) cooling the stratosphere which increases ozone via the reduction in the ozone chemical loss rates, and (2) accelerating the Brewer-Dobson circulation (BDC) which redistributes ozone in the lower stratosphere. The net result of CO2 loading is an increase in global ozone in the total column and upper stratosphere. CH4 loading impacts ozone by: (1) increasing atmospheric H2O and the odd hydrogen species which decreases ozone via the enhanced HOx-ozone loss rates; (2) increasing the H2O cooling of the middle atmosphere which reduces the ozone chemical loss rates, partially offsetting the enhanced HOx-ozone loss; (3) converting active to reservoir chlorine via the reaction CH4+Cl→HCl+CH3 which leads to more ozone; and (4) increasing the NOx-ozone production in the troposphere. The net result of CH4 loading is an ozone decrease above 40–45 km, and an increase below 40–45 km and in the total column. The 2-D simulations indicate that prior to 1940, the ozone increases due to CO2 and CH4 loading outpace the ozone losses due to increasing N2O and carbon tetrachloride (CCl4) emissions, so that total column and upper stratospheric global ozone reach broad maxima during the 1920s–1930s. This precedes the significant ozone depletion during ~1960–2050 driven by the ODS loading. During the latter half of the 21st century as ODS emissions diminish, CO2, N2O, and CH4 loading will all have significant impacts on global total ozone based on the Intergovernmental Panel on Climate Change (IPCC) A1B (medium) scenario, with CO2 having the largest individual effect. Sensitivity tests illustrate that due to the strong chemical interaction between methane and chlorine, the CH4 impact on total ozone becomes significantly more positive with larger ODS loading. The model simulations also show that changes in stratospheric temperature, BDC, and age of air during 1850–2100 are controlled mainly by the CO2 and ODS loading. The simulated acceleration of the BDC causes the global average age of air above 22 km to decrease by ~1 yr from 1860–2100. The photochemical lifetimes of N2O, CFCl3, CF2Cl2, and CCl4 decrease by 11–13 % during 1960–2100 due to the acceleration of the BDC, with much smaller lifetime changes (<4 %) caused by changes in the photochemical loss rates.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference6 articles.

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3