A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015

Author:

Bolibar JordiORCID,Rabatel Antoine,Gouttevin Isabelle,Galiez Clovis

Abstract

Abstract. Glacier mass balance (MB) data are crucial to understanding and quantifying the regional effects of climate on glaciers and the high-mountain water cycle, yet observations cover only a small fraction of glaciers in the world. We present a dataset of annual glacier-wide mass balance of all the glaciers in the French Alps for the 1967–2015 period. This dataset has been reconstructed using deep learning (i.e. a deep artificial neural network) based on direct MB observations and remote-sensing annual estimates, meteorological reanalyses and topographical data from glacier inventories. The method's validity was assessed previously through an extensive cross-validation against a dataset of 32 glaciers, with an estimated average error (RMSE) of 0.55 mw.e.a-1, an explained variance (r2) of 75 % and an average bias of −0.021 mw.e.a-1. We estimate an average regional area-weighted glacier-wide MB of −0.69±0.21 (1σ) mw.e.a-1 for the 1967–2015 period with negative mass balances in the 1970s (−0.44 mw.e.a-1), moderately negative in the 1980s (−0.16 mw.e.a-1) and an increasing negative trend from the 1990s onwards, up to −1.26 mw.e.a-1 in the 2010s. Following a topographical and regional analysis, we estimate that the massifs with the highest mass losses for the 1967–2015 period are the Chablais (−0.93 mw.e.a-1), Champsaur (−0.86 mw.e.a-1), and Haute-Maurienne and Ubaye ranges (−0.84 mw.e.a-1 each), and the ones presenting the lowest mass losses are the Mont-Blanc (−0.68 mw.e.a-1), Oisans and Haute-Tarentaise ranges (−0.75 mw.e.a-1 each). This dataset – available at https://doi.org/10.5281/zenodo.3925378 (Bolibar et al., 2020a) – provides relevant and timely data for studies in the fields of glaciology, hydrology and ecology in the French Alps in need of regional or glacier-specific annual net glacier mass changes in glacierized catchments.

Funder

Région Auvergne-Rhône-Alpes

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Benn, D. I. and Evans, D. J. A.: Glaciers and glaciation, Routledge, New York, NY, USA, 2nd Edn., available at: http://www.imperial.eblib.com/EBLWeb/patron/?target=patron&extendedid=P_615876_0 (last access: 27 August 2020), oCLC: 878863282, 2014. a

2. Berthier, E., Vincent, C., Magnússon, E., Gunnlaugsson, À. Þ., Pitte, P., Le Meur, E., Masiokas, M., Ruiz, L., Pálsson, F., Belart, J. M. C., and Wagnon, P.: Glacier topography and elevation changes derived from Pléiades sub-meter stereo images, The Cryosphere, 8, 2275–2291, https://doi.org/10.5194/tc-8-2275-2014, 2014. a

3. Berthier, E., Cabot, V., Vincent, C., and Six, D.: Decadal Region-Wide and Glacier-Wide Mass Balances Derived from Multi-Temporal ASTER Satellite Digital Elevation Models. Validation over the Mont-Blanc Area, Front. Earth Sci., 4, 63, https://doi.org/10.3389/feart.2016.00063, 2016. a

4. Bolibar, J.: ALPGM (ALpine Parameterized Glacier Model) v1.1, Zenodo, https://doi.org/10.5281/zenodo.3609136, 2020. a, b, c

5. Bolibar, J., Rabatel, A., Gouttevin, I., and Galiez, C.: A deep learning reconstruction of mass balance series for all glaciers in the French Alps: 1967–2015, Zenodo, https://doi.org/10.5281/zenodo.3922935, 2020a. a, b, c, d

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3