Abstract
AbstractUnderstanding monthly-to-annual climate variability is essential for adapting to future climate extremes. Key ways to do this are through analysing climate field reconstructions and reanalyses. However, producing such reconstructions can be limited by high production costs, unrealistic linearity assumptions, or uneven distribution of local climate records. Here, we present a machine learning-based non-linear climate variability reconstruction method using a Recurrent Neural Network that is able to learn from existing model outputs and reanalysis data. As a proof-of-concept, we reconstructed more than 400 years of global, monthly temperature anomalies based on sparse, realistically distributed pseudo-station data and show the impact of different training data sets. Our reconstructions show realistic temperature patterns and magnitude reproduction costing about 1 hour on a middle-class laptop. We highlight the method’s capability in terms of mean statistics compared to more established methods and find that it is also suited to reconstruct specific climate events. This approach can easily be adapted for a wide range of regions, periods and variables.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献