Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)

Author:

Crazzolara Claudio,Held Andreas

Abstract

Abstract. A new cascade impactor has been developed with the arrangement of the classifying nozzles optimized for analysis of the collected particles by total reflection X-ray fluorescence (TXRF). TXRF offers detection limits in the range of a few picograms of absolute mass and therefore poses great potential for the elemental analysis of heavy metals in aerosol particles. To fully exploit this high sensitivity, particles have to be collected in the effective analysis area of the TXRF instrument, which is often smaller than typical deposition patterns of commercial impactors or filter samplers. This is achieved by a novel compact arrangement of the classifying nozzles within a circular area of a diameter of less than 5 mm. A decreasing density of the nozzle spacing from the inside to the outside of the nozzle cluster allows for constant cross-flow conditions, minimizing the mutual influence of the individual nozzles. The design of a multistage cascade impactor is presented to individually sample PM10, PM2.5 and PM1 size fractions. Considering the high sensitivity of TXRF analysis, constructive measures have been taken to prevent attrition of impactor material which might lead to methodical blank values. Experimental validation confirms that neither attrition nor cross-contamination can be observed. Furthermore, a new spin-coating method has been developed which makes it possible to apply a thin and defined adhesive layer of grease to the sample carrier with good repeatability. Application of the impactor in a case study at an urban site at Potsdamer Platz, Berlin, Germany, shows that sampling at a moderate volume flow rate of 5 L min−1, the particle mass collected in 30 min or less is sufficient for reliable TXRF analysis of heavy metal concentrations (Fe, Zn, Cu, Mn, Pb and Ni) in ambient aerosol. This high time resolution enables snapshot sampling, e.g. to quantify variations in particle source strengths. Overall, the new impactor optimized for TXRF analysis bears great potential to improve the quantification of particulate trace metals and other elements in PM10, PM2.5 and PM1 with high time resolution.

Publisher

Copernicus GmbH

Reference33 articles.

1. Allen, M. D. and Raabe, O. G.: Re-evaluation of Millikan's oil drop data for the motion of small particles in air, J. Aerosol Sci., 13, 537–547, 1982.

2. Allen, M. D. and Raabe, O. G.: Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus, Aerosol Sci. Tech., 4, 269–286, 1985.

3. Beckhoff, B., Fliegauf, R., Kolbe, M., Müller, M., Weser, J., and Ulm, G.: Reference-free total reflection X-ray fluorescence analysis of semiconductor surfaces with synchrotron radiation, Anal. Chem., 79, 7873–7882, 2007.

4. Berliner Luftgütemessnetz: Jahresbericht 2021, Senatsverwaltung für Umwelt, Mobilität, Verbraucher- und Klimaschutz, Berliner Luftgütemessnetz, Berlin, Germany, https://www.berlin.de/sen/ uvk/_assets/umwelt/luft/luftqualitaet/luftdaten-archiv/monats-und-jahresberichte/jahresbericht2021.pdf (last access: 1 August 2023), 2023.

5. Bruker Nano GmbH: Software: ESPRIT Familie, https://www.bruker.com/de/products-and-solutions/elemental-analyzers/eds-wds-ebsd-SEM-Micro-XRF/software-esprit-family.html, last access: 5 April 2024.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3