Methane in Zackenberg Valley, NE Greenland: multidecadal growing season fluxes of a high-Arctic tundra

Author:

Scheller Johan H.ORCID,Mastepanov MikhailORCID,Christiansen Hanne H.,Christensen Torben R.

Abstract

Abstract. The carbon balance of high-latitude terrestrial ecosystems plays an essential role in the atmospheric concentration of trace gases, including carbon dioxide (CO2) and methane (CH4). Increasing atmospheric methane levels have contributed to ∼ 20 % of the observed global warming since the pre-industrial era. Rising temperatures in the Arctic are expected to promote the release of methane from Arctic ecosystems. Still, existing methane flux measurement efforts are sparse and highly scattered, and further attempts to assess the landscape fluxes over multiple years are needed. Here we combine multi-year July–August methane flux monitoring (2006–2019) from automated flux chambers in the central fens of Zackenberg Valley, northeast Greenland, with several flux measurement campaigns on the most common vegetation types in the valley to estimate the landscape fluxes over 14 years. Methane fluxes based on manual chamber measurements are available from campaigns in 1997, 1999–2000, and in shorter periods from 2007–2013 and were summarized in several published studies. The landscape fluxes are calculated for the entire valley floor and a smaller subsection of the valley floor, containing the productive fen area, Rylekærene. When integrated for the valley floor, the estimated July–August landscape fluxes were low compared to the single previous estimate, while the landscape fluxes for Rylekærene were comparable to previous estimates. The valley floor was a net methane source during July–August, with estimated mean methane fluxes ranging from 0.18 to 0.67 mg m−2 h−1. The mean methane fluxes in the fen-rich Rylekærene were substantially higher, with fluxes ranging from 0.98 to 3.26 mg m−2 h−1. A 2017–2018 erosion event indicates that some fen and grassland areas in the center of the valley are becoming unstable following pronounced fluvial erosion and a prolonged period of permafrost warming. Although such physical disturbance in the landscape can disrupt the current ecosystem–atmosphere flux patterns, even pronounced future erosion of ice-rich areas is unlikely to impact methane fluxes on a landscape scale significantly. Instead, projected changes in future climate in the valley play a more critical role. The results show that multi-year landscape methane fluxes are highly variable on a landscape scale and stress the need for long-term spatially distributed measurements in the Arctic.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3