Evaluation of TRMM rainfall estimates over a large Indian river basin (Mahanadi)

Author:

Kneis D.,Chatterjee C.,Singh R.

Abstract

Abstract. The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall–runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate < 0.6 for ground-based intensities > 80 mm day-1). At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2–0.6). In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash–Sutcliffe index of 0.76–0.88 at gauges not affected by reservoir operation). This compares to the values of 0.71–0.78 for the gauge-adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT real-time data. Whether the 3B42-RT data are useful in the context of operational runoff prediction in spite of the identified problems remains a question for further research.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference24 articles.

1. Collischonn, B., Collischonn, W., and Tucci, C. E. M.: Daily hydrological modeling in the Amazon basin using TRMM rainfall estimates, J. Hydrol., 360, 207–216, 2008.

2. de Bruin, H. A. R.: From Penman to Makkink, in: Evaporation and Weather: Proceedings and Information No. 39, edited by: Hooghart, J. C., TNO Committee on Hydrological Research, The Hague, 1987.

3. DOWR: List of Past Flood and Area Damaged by Flood in Orissa, Tech. rep., Government of Orissa, Department of Water Resources, available at: http://www.dowrorissa.gov.in/HistoryofFLOOD/HistoryofFLOOD.pdf, last access: March 2012, 2009.

4. DOWR: Annual Report 2009–2010, Tech. rep., Government of Orissa, Department of Water Resources, available at: http://www.dowrorissa.gov.in/AnnualReport/WR_AR08-09.pdf, last access: March 2012, 2010.

5. Gao, Y. C. and Liu, M. F.: Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau, Hydrol. Earth Syst. Sci., 17, 837–849, https://doi.org/10.5194/hess-17-837-2013, 2013.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3