Publisher
Springer Science and Business Media LLC
Subject
Geochemistry and Petrology,Geophysics
Reference55 articles.
1. Abbasi, M., Farokhnia, A., Bahreinimotlagh, M., & Roozbahani, R. (2021). A hybrid of Random Forest and Deep Auto-Encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction. Journal of Hydrology, 597, 125717.
2. Adnan, R. M., Liang, Z., Heddam, S., Zounemat-Kermani, M., Kisi, O., & Li, B. (2020). Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. Journal of Hydrology, 586, 124371.
3. Adnan, R. M., Yuan, X., Kisi, O., & Anam, R. (2017). Improving accuracy of river flow forecasting using LSSVR with gravitational search algorithm. Advances in Meteorology, 20, 17.
4. Al-Sudani, Z. A., Salih, S. Q., & Yaseen, Z. M. (2019). Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. Journal of Hydrology, 573, 1–12.
5. Araza, A., Hein, L., Duku, C., Rawlins, M. A., & Lomboy, R. (2020). Data-driven streamflow modelling in ungauged basins: regionalizing random forest (RF) models. bioRxiv.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献