The EUPPBench postprocessing benchmark dataset v1.0
-
Published:2023-06-28
Issue:6
Volume:15
Page:2635-2653
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Demaeyer JonathanORCID, Bhend JonasORCID, Lerch SebastianORCID, Primo CristinaORCID, Van Schaeybroeck BertORCID, Atencia Aitor, Ben Bouallègue Zied, Chen JieyuORCID, Dabernig MarkusORCID, Evans GavinORCID, Faganeli Pucer Jana, Hooper Ben, Horat Nina, Jobst DavidORCID, Merše Janko, Mlakar PeterORCID, Möller AnnetteORCID, Mestre Olivier, Taillardat MaximeORCID, Vannitsem StéphaneORCID
Abstract
Abstract. Statistical postprocessing of medium-range weather forecasts is an important component of modern forecasting systems. Since the beginning of modern data science, numerous new postprocessing methods have been proposed, complementing an already very diverse field. However, one of the questions that frequently arises when considering different methods in the framework of implementing operational postprocessing is the relative performance of the methods for a given specific task. It is particularly challenging to find or construct a common comprehensive dataset that can be used to perform such comparisons. Here, we introduce the first version of EUPPBench (EUMETNET postprocessing benchmark), a dataset of time-aligned forecasts and observations, with the aim to facilitate and standardize this process. This dataset is publicly available at
https://github.com/EUPP-benchmark/climetlab-eumetnet-postprocessing-benchmark (31 December 2022) and on Zenodo (https://doi.org/10.5281/zenodo.7429236, Demaeyer, 2022b and
https://doi.org/10.5281/zenodo.7708362, Bhend et al., 2023). We provide examples showing how to download and use the data, we propose a set of evaluation methods, and we perform a first benchmark of several methods for the correction of 2 m temperature forecasts.
Funder
Vector Stiftung Deutsche Forschungsgemeinschaft Helmholtz Association
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference76 articles.
1. Ashkboos, S., Huang, L., Dryden, N., Ben-Nun, T., Dueben, P., Gianinazzi, L.,
Kummer, L., and Hoefler, T.: Ens-10: A dataset for post-processing ensemble
weather forecast, arXiv [preprint], https://doi.org/10.48550/arXiv.2206.14786, 29 June 2022. a, b 2. Ben Bouallègue, Z.: Accounting for representativeness in the verification
of ensemble forecasts, ECMWF Technical Memoranda, 865, https://doi.org/10.21957/5z6esc7wr, 2020. a 3. Ben Bouallègue, Z.: EUPP-benchmark/ESSD-ASRE: version 1.0 release, Zenodo [code],
https://doi.org/10.5281/zenodo.7477735, 2023. a 4. Benjamini, Y. and Hochberg, Y.: Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing, J. Roy.
Stat. Soc. B Met., 57, 289–300, https://doi.org/10.1111/j.2517-6161.1995.tb02031.x, 1995. a 5. Bhend, J., Dabernig, M., Demaeyer, J., Mestre, O., and Taillardat, M.:
EUPPBench postprocessing benchmark dataset – station data, Zenodo [data set],
https://doi.org/10.5281/zenodo.7708362, 2023. a, b
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|