Affiliation:
1. Google Research Mountain View CA USA
2. Google DeepMind London UK
3. European Centre for Medium‐Range Weather Forecasts Reading UK
Abstract
AbstractWeatherBench 2 is an update to the global, medium‐range (1–14 days) weather forecasting benchmark proposed by (Rasp et al., 2020, https://doi.org/10.1029/2020ms002203), designed with the aim to accelerate progress in data‐driven weather modeling. WeatherBench 2 consists of an open‐source evaluation framework, publicly available training, ground truth and baseline data as well as a continuously updated website with the latest metrics and state‐of‐the‐art models: https://sites.research.google/weatherbench. This paper describes the design principles of the evaluation framework and presents results for current state‐of‐the‐art physical and data‐driven weather models. The metrics are based on established practices for evaluating weather forecasts at leading operational weather centers. We define a set of headline scores to provide an overview of model performance. In addition, we also discuss caveats in the current evaluation setup and challenges for the future of data‐driven weather forecasting.
Publisher
American Geophysical Union (AGU)
Reference59 articles.
1. Andrychowicz M. Espeholt L. Li D. Merchant S. Merose A. Zyda F. et al. (2023).Deep learning for day forecasts from sparse observations(arXiv:2306.06079 [physics]).https://doi.org/10.48550/arXiv.2306.06079
2. Ashkboos S. Huang L. Dryden N. Ben‐Nun T. Dueben P. Gianinazzi L. et al. (2022).ENS‐10: A dataset for post‐processing ensemble weather forecasts(arXiv:2206.14786 [physics]).https://doi.org/10.48550/arXiv.2206.14786
3. The quiet revolution of numerical weather prediction
4. Ben‐Bouallegue Z. Clare M. C. A. Magnusson L. Gascon E. Maier‐Gerber M. Janousek M. et al. (2023).The rise of data‐driven weather forecasting(arXiv:2307.10128 [physics]).https://doi.org/10.48550/arXiv.2307.10128
5. Ben‐Bouallegue Z. Weyn J. A. Clare M. C. A. Dramsch J. Dueben P. &Chantry M.(2023).Improving medium‐range ensemble weather forecasts with hierarchical ensemble transformers(arXiv:2303.17195 [physics]). Retrieved fromhttp://arxiv.org/abs/2303.17195
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献