WeatherBench 2: A Benchmark for the Next Generation of Data‐Driven Global Weather Models

Author:

Rasp Stephan1ORCID,Hoyer Stephan1,Merose Alexander1,Langmore Ian1,Battaglia Peter2,Russell Tyler1,Sanchez‐Gonzalez Alvaro2,Yang Vivian1,Carver Rob1,Agrawal Shreya1,Chantry Matthew3ORCID,Ben Bouallegue Zied3,Dueben Peter3ORCID,Bromberg Carla1,Sisk Jared1,Barrington Luke1,Bell Aaron1,Sha Fei1

Affiliation:

1. Google Research Mountain View CA USA

2. Google DeepMind London UK

3. European Centre for Medium‐Range Weather Forecasts Reading UK

Abstract

AbstractWeatherBench 2 is an update to the global, medium‐range (1–14 days) weather forecasting benchmark proposed by (Rasp et al., 2020, https://doi.org/10.1029/2020ms002203), designed with the aim to accelerate progress in data‐driven weather modeling. WeatherBench 2 consists of an open‐source evaluation framework, publicly available training, ground truth and baseline data as well as a continuously updated website with the latest metrics and state‐of‐the‐art models: https://sites.research.google/weatherbench. This paper describes the design principles of the evaluation framework and presents results for current state‐of‐the‐art physical and data‐driven weather models. The metrics are based on established practices for evaluating weather forecasts at leading operational weather centers. We define a set of headline scores to provide an overview of model performance. In addition, we also discuss caveats in the current evaluation setup and challenges for the future of data‐driven weather forecasting.

Publisher

American Geophysical Union (AGU)

Reference59 articles.

1. Andrychowicz M. Espeholt L. Li D. Merchant S. Merose A. Zyda F. et al. (2023).Deep learning for day forecasts from sparse observations(arXiv:2306.06079 [physics]).https://doi.org/10.48550/arXiv.2306.06079

2. Ashkboos S. Huang L. Dryden N. Ben‐Nun T. Dueben P. Gianinazzi L. et al. (2022).ENS‐10: A dataset for post‐processing ensemble weather forecasts(arXiv:2206.14786 [physics]).https://doi.org/10.48550/arXiv.2206.14786

3. The quiet revolution of numerical weather prediction

4. Ben‐Bouallegue Z. Clare M. C. A. Magnusson L. Gascon E. Maier‐Gerber M. Janousek M. et al. (2023).The rise of data‐driven weather forecasting(arXiv:2307.10128 [physics]).https://doi.org/10.48550/arXiv.2307.10128

5. Ben‐Bouallegue Z. Weyn J. A. Clare M. C. A. Dramsch J. Dueben P. &Chantry M.(2023).Improving medium‐range ensemble weather forecasts with hierarchical ensemble transformers(arXiv:2303.17195 [physics]). Retrieved fromhttp://arxiv.org/abs/2303.17195

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3