A long-term monthly surface water storage dataset for the Congo basin from 1992 to 2015

Author:

Kitambo Benjamin M.ORCID,Papa FabriceORCID,Paris Adrien,Tshimanga Raphael M.ORCID,Frappart Frederic,Calmant Stephane,Elmi Omid,Fleischmann Ayan SantosORCID,Becker MelanieORCID,Tourian Mohammad J.ORCID,Jucá Oliveira Rômulo A.ORCID,Wongchuig SlyORCID

Abstract

Abstract. The spatio-temporal variation of surface water storage (SWS) in the Congo River basin (CRB), the second-largest watershed in the world, remains widely unknown. In this study, satellite-derived observations are combined to estimate SWS dynamics at the CRB and sub-basin scales over 1992–2015. Two methods are employed. The first one combines surface water extent (SWE) from the Global Inundation Extent from Multi-Satellite (GIEMS-2) dataset and the long-term satellite-derived surface water height from multi-mission radar altimetry. The second one, based on the hypsometric curve approach, combines SWE from GIEMS-2 with topographic data from four global digital elevation models (DEMs), namely the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Observing Satellite (ALOS), Multi-Error-Removed Improved Terrain (MERIT), and Forest And Buildings removed Copernicus DEM (FABDEM). The results provide SWS variations at monthly time steps from 1992 to 2015 characterized by a strong seasonal and interannual variability with an annual mean amplitude of ∼101±23 km3. The Middle Congo sub-basin shows a higher mean annual amplitude (∼71±15 km3). The comparison of SWS derived from the two methods and four DEMs shows an overall fair agreement. The SWS estimates are assessed against satellite precipitation data and in situ river discharge and, in general, a relatively fair agreement is found between the three hydrological variables at the basin and sub-basin scales (linear correlation coefficient >0.5). We further characterize the spatial distribution of the major drought that occurred across the basin at the end of 2005 and in early 2006. The SWS estimates clearly reveal the widespread spatial distribution of this severe event (∼40 % deficit as compared to their long-term average), in accordance with the large negative anomaly observed in precipitation over that period. This new SWS long-term dataset over the Congo River basin is an unprecedented new source of information for improving our comprehension of hydrological and biogeochemical cycles in the basin. As the datasets used in our study are available globally, our study opens opportunities to further develop satellite-derived SWS estimates at the global scale. The dataset of the CRB's SWS and the related Python code to run the reproducibility of the hypsometric curve approach dataset of SWS are respectively available for download at https://doi.org/10.5281/zenodo.7299823 and https://doi.org/10.5281/zenodo.8011607 (Kitambo et al., 2022b, 2023).

Funder

Centre National d’Etudes Spatiales

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3