Multi‐Satellite Data Assimilation for Large‐Scale Hydrological‐Hydrodynamic Prediction: Proof of Concept in the Amazon Basin

Author:

Wongchuig S.1ORCID,Paiva R.2ORCID,Siqueira V.2ORCID,Papa F.13ORCID,Fleischmann A.4,Biancamaria S.1ORCID,Paris A.15,Parrens M.67ORCID,Al Bitar A.7ORCID

Affiliation:

1. Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) Université de Toulouse CNES/CNRS/IRD/UT3 Toulouse France

2. Instituto de Pesquisas Hidráulicas IPH Universidade Federal do Rio Grande do Sul UFRGS Porto Alegre Brazil

3. Institute of Geosciences Campus Universitario Darcy Ribeiro Universidade de Brasília (UnB) Brasilia Brazil

4. Instituto de Desenvolvimento Sustentável Mamirauá Tefé Brazil

5. Hydro Matters 1 Chemin de la Pousaraque Le Faget France

6. Dynafor, Université de Toulouse INRAE INPT INP‐PURPAN Castanet‐Tolosan France

7. Centre d’Etudes Spatiales de la Biosphère (CESBIO) Toulouse University (CNES, CNRS, INRAe, IRD, UPS) Toulouse France

Abstract

AbstractSatellite remote sensing enhances model predictions by providing insights into terrestrial and hydrological processes. While data assimilation techniques have proven promising, there is a lack of standardized and effective approaches for integrating multiple observations simultaneously. This study presents a novel assimilation framework, the multi‐observation local ensemble‐Kalman‐filter (MoLEnKF), designed to effectively integrate multiple variables, even at scales different than the model. Evaluation of MoLEnKF in the Amazon River basin includes assimilation experiments with remote sensing data only, including water surface elevation (WSE), terrestrial water storage (TWS), flood extent (FE), and soil moisture (SM). MoLEnKF demonstrates improvements in a scenario where regions lack in‐situ hydroclimatic records and when assuming uncertainties of large‐scale hydrologic‐hydrodynamic models. Assimilating WSE outperforms daily discharge and water‐level estimations, achieving 38% and 36% error reduction, respectively. However, the monthly evapotranspiration estimate achieves the greatest error reduction by assimilating SM with 11%. MoLEnKF always remains in second position in a ranking of error and uncertainty reduction, providing an intermediate condition, being able to holistically outperform univariate experiments. MoLEnKF also outperform state‐of‐the‐art models in many cases. This study suggests potential improvements, urging exploration of correlations between assimilated variables and adaptive localization methods based on seasonality. The flexibility and the elegant way of expressing the LEnKF equations by MoLEnKF facilitates their application with different types of variables, compatible with large‐scale hydrologic‐hydrodynamic models and missions such as SWOT. Its robustness ensures easy replicability worldwide, facilitating hydrological reanalysis and improved forecasting, establishing MoLEnKF as a valuable tool for the scientific community in hydrological research.

Funder

Centre National d’Etudes Spatiales

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3