High-resolution emission inventory of full-volatility organic compounds from cooking in China during 2015–2021

Author:

Li Zeqi,Wang ShuxiaoORCID,Li Shengyue,Wang Xiaochun,Huang Guanghan,Chang Xing,Huang Lyuyin,Liang Chengrui,Zhu Yun,Zheng Haotian,Song Qian,Wu Qingru,Zhang Fenfen,Zhao BinORCID

Abstract

Abstract. Quantifying the full-volatility organic emissions from cooking sources is important for understanding the causes of organic aerosol pollution. However, existing national cooking emission inventories in China fail to cover full-volatility organics and have large biases in estimating emissions and their spatial distribution. Here, we develop the first emission inventory of full-volatility organics from cooking in China, which covers emissions from individual commercial restaurants as well as residential kitchens and canteens. In our emission estimates, we use cuisine-specific full-volatility emission factors and provincial policy-driven purification facility installation proportions, which allows us to consider the significant impact of diverse dietary preferences and policy changes on China's cooking emissions. The 2021 emissions of volatile organic compounds (VOCs), intermediate-volatility organic compounds (IVOCs), semi-volatile organic compounds (SVOCs), and organic compounds with even lower volatility (xLVOCs) from cooking in China are 561 (317–891, 95 % confidence interval) kt yr−1, 241 (135–374) kt yr−1, 176 (95.8–290) kt yr−1, and 13.1 (7.36–21.0) kt yr−1, respectively. The IVOC and SVOC emissions from cooking account for 9 %–21 % and 31 %–62 % of the total emissions from all sources in the five most densely populated cities in China. Among all cooking types, commercial cooking dominates the emissions, contributing 54.5 %, 66.2 %, 68.5 %, and 46.7 % to the VOC, IVOC, SVOC, and xLVOC emissions, respectively. Sichuan–Hunan cuisine contributes the most to total cooking emissions among all commercial cuisines. Residential cooking emissions are also important, accounting for 22.2 %–47.1 % of the cooking organic emissions across the four volatility ranges, whereas canteens make minor contributions to each volatility range (<10 %). In terms of spatial distribution, emission hotspots mainly occur in densely populated areas and regions with oily and spicy dietary preferences. From 2015 to 2021, national organic emissions from cooking increased by 25.2 % because of the rapid growth of the catering industry, despite being partly offset by the increased installation of purification facilities. Future control measures need to further promote the purification facilities in commercial restaurants and improve their removal efficiency as well as reduce emissions from residential cooking. Our dataset and generalizable methodology serve as valuable resources for evaluating the air quality, climate, and health impacts of cooking sources, and help to formulate effective emission control policies. Our national, multi-year, high-spatial-resolution dataset can be accessed from https://doi.org/10.6084/m9.figshare.23537673 (Li et al., 2023).

Funder

National Natural Science Foundation of China

Samsung Advanced Institute of Technology

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3