Sources of organic aerosols in eastern China: a modeling study with high-resolution intermediate-volatility and semivolatile organic compound emissions

Author:

An Jingyu,Huang ChengORCID,Huang Dandan,Qin MomeiORCID,Liu HuanORCID,Yan Rusha,Qiao Liping,Zhou Min,Li Yingjie,Zhu Shuhui,Wang Qian,Wang Hongli

Abstract

Abstract. Current chemical transport models fail to reproduce both the concentrations and temporal variations of organic aerosol (OA), especially the secondary organic aerosol (SOA), hindering the identification of major contribution sources. The fact that precursors of intermediate-volatility and semivolatile organic compounds (I/SVOCs) are not included in models has a significant impact on the performance of SOA simulation. Herein, we establish a high-resolution emission inventory of I/SVOCs and by incorporating it into the CMAQ model, concentrations, temporal variations, and spatial distributions of POA and SOA originating from different sources in the Yangtze River Delta (YRD) region of China were simulated. By incorporating I/SVOC emissions into the model, the modeled average SOA concentrations in the region increased by 148 %. Significant model improvements in the simulations of different OA components were demonstrated by comparison with comprehensive observation data. Furthermore, spatial and seasonal variations of different source contributions to OA production have been identified. We found that cooking emissions are predominant sources of POA in the densely populated urban area of the region. I/SVOC emissions from industrial sources are dominant contributors to the SOA formation, followed by those from mobile sources. Our results indicate that future control measures should be specifically tailored on an intraregional scale based on the different source characteristics to achieve the national goal of continuous improvement in air quality. In addition, local source profiles and emission factors of I/SVOCs, as well as SOA formation mechanisms in the model framework must urgently be updated to further improve the model performance and thus the accuracy of source identifications.

Funder

National Natural Science Foundation of China

Shanghai Municipal Education Commission

State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference93 articles.

1. An, J., Huang, Y., Huang, C., Wang, X., Yan, R., Wang, Q., Wang, H., Jing, S., Zhang, Y., Liu, Y., Chen, Y., Xu, C., Qiao, L., Zhou, M., Zhu, S., Hu, Q., Lu, J., and Chen, C.: Emission inventory of air pollutants and chemical speciation for specific anthropogenic sources based on local measurements in the Yangtze River Delta region, China, Atmos. Chem. Phys., 21, 2003–2025, https://doi.org/10.5194/acp-21-2003-2021, 2021.

2. An, J., Huang, C., Huang, D., Qin, M., Yan, R., Qiao, L., Zhou, M., Li, Y., Zhu, S., Wang, Q., and Wang, H.: Sources of organic aerosols in east China: A modeling study with high-resolution intermediate-volatility and semi-volatile organic compound emissions, figshare [data set], https://doi.org/10.6084/m9.figshare.19536082.v1, 2022.

3. Boylan, J. W. and Russell, A. G.: PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models, Atmos. Environ., 40, 4946–4959, 2006.

4. Cai, S., Zhu, L., Wang, S., Wisthaler, A., Li, Q., Jiang, J., and Hao, J.: Time-resolved intermediate-volatility and semivolatile organic compound emissions from household coal combustion in northern China, Environ. Sci. Technol., 53, 9269–9278, 2019.

5. Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer, Mass Spectrom. Rev., 26, 185–222, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3