Silicon micro-levers and a multilayer graphene membrane studied via laser photoacoustic detection

Author:

Zelinger Z.,Janda P.,Suchánek J.,Dostál M.,Kubát P.,Nevrlý V.,Bitala P.,Civiš S.

Abstract

Abstract. Laser photoacoustic spectroscopy (PAS) is a method that utilizes the sensing of the pressure waves that emerge upon the absorption of radiation by absorbing species. The use of the conventional electret microphone as a pressure sensor has already reached its limit, and a new type of microphone – an optical microphone – has been suggested to increase the sensitivity of this method. The movement of a micro-lever or a membrane is sensed via a reflected beam of light, which falls onto a position-sensing detector. The use of one micro-lever as a pressure sensor in the form of a silicon cantilever has already enhanced the sensitivity of laser PAS. Herein, we test two types of home-made sensing elements – four coupled silicon micro-levers and a multilayer graphene membrane – which have the potential to enhance this sensitivity further. Graphene sheets possess outstanding electromechanical properties and demonstrate impressive sensitivity as mass detectors. Their mechanical properties make them suitable for use as micro-/nano-levers or membranes, which could function as extremely sensitive pressure sensors. Graphene sheets were prepared from multilayer graphene through the micromechanical cleavage of basal plane highly ordered pyrolytic graphite. Multilayer graphene sheets (thickness ∼102 nm) were then mounted on an additional glass window in a cuvette for PAS. The movements of the sheets induced by acoustic waves were measured using an He–Ne laser beam reflected from the sheets onto a quadrant detector. A discretely tunable CO2 laser was used as the source of radiation energy for the laser PAS experiments. Sensitivity testing of the investigated sensing elements was performed with the aid of concentration standards and a mixing arrangement in a flow regime. The combination of sensitive microphones and micromechanical/nanomechanical elements with laser techniques offers a method for the study and development of new, reliable and highly sensitive chemical sensing systems. To our knowledge, we have produced the first demonstration of the feasibility of using four coupled silicon micro-levers and graphene membranes in an optical microphone for PAS. Although the sensitivity thus far remains inferior to that of the commercial electret microphone (with an S / N ratio that is 5 times lower), further improvement is expected to be achieved by adjusting the micro-levers and membrane elements, the photoacoustic system and the position detector.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3