The polarized Sun and sky radiometer SSARA: design, calibration, and application for ground-based aerosol remote sensing
-
Published:2020-01-20
Issue:1
Volume:13
Page:239-258
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Grob HansORCID, Emde Claudia, Wiegner Matthias, Seefeldner Meinhard, Forster LindaORCID, Mayer Bernhard
Abstract
Abstract. Recently, polarimetry has been used to enhance classical photometry to infer aerosol optical properties,
as polarized radiation contains additional information about the particles.
Therefore, we have equipped the Sun–sky automatic radiometer (SSARA)
with polarizer filters to measure linearly polarized light at 501.5 nm. We describe an improved radiometric and polarimetric calibration method,
which allows us to simultaneously determine the linear polarizers' diattenuation and relative orientation with high accuracy
(0.002 and 0.1∘, respectively).
Furthermore, we employed a new calibration method for the alt-azimuthal mount
capable of correcting the instrument's pointing to within 32 arcmin.
So far, this is limited by the accuracy of the Sun tracker.
Both these methods are applicable to other Sun and sky radiometers, such as the Cimel CE318-DP instruments used in the AErosol RObotic NETwork (AERONET). During the A-LIFE (Absorbing aerosol layers in a changing climate: aging, LIFEtime and dynamics) field campaign in April 2017, SSARA collected 22 d of data.
Here, we present two case studies. The first demonstrates the performance of an aerosol retrieval from SSARA observations under partially cloudy conditions.
In the other case, a high aerosol load due to a Saharan dust layer was present during otherwise clear-sky conditions.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference53 articles.
1. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a 2. Anderson, G. P., Clough, S. A., Kneizys, F., Chetwynd, J. H., and Shettle,
E. P.: AFGL atmospheric constituent profiles (0-120 km), Tech. rep., Air
Force Geophysics Lab Hanscom AFB, MA, 1986. a 3. Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016. a 4. Balois, J. Y.: Polarizing box POLBOX User’s Guide, Tech. rep., Laboratoire
d'Optique Atmospherique, Lille, 1998. a 5. Bass, M., DeCusatis, C., Enoch, J., Lakshminarayanan, V., Li, G., Macdonald,
C., Mahajan, V., and Van Stryland, E.: Handbook of Optics, Third Edition
Volume II: Design, Fabrication and Testing, Sources and Detectors, Radiometry
and Photometry, McGraw-Hill, Inc., New York, NY, USA, 3 edn., 2010. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|