Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign
-
Published:2017-06-20
Issue:12
Volume:17
Page:7365-7386
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Braga Ramon Campos, Rosenfeld Daniel, Weigel RalfORCID, Jurkat Tina, Andreae Meinrat O.ORCID, Wendisch ManfredORCID, Pöhlker Mira L., Klimach Thomas, Pöschl UlrichORCID, Pöhlker ChristopherORCID, Voigt ChristianeORCID, Mahnke ChristophORCID, Borrmann StephanORCID, Albrecht Rachel I.ORCID, Molleker SergejORCID, Vila Daniel A.ORCID, Machado Luiz A. T.ORCID, Artaxo PauloORCID
Abstract
Abstract. The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content (CWC) derived from the different instruments generally shows good agreement within the instrumental uncertainties. To this end, the directly measured cloud drop concentrations (Nd) near cloud base were compared with inferred values based on the measured cloud base updraft velocity (Wb) and NCCN(S) spectra. The measurements of Nd at cloud base were also compared with drop concentrations (Na) derived on the basis of an adiabatic assumption and obtained from the vertical evolution of cloud drop effective radius (re) above cloud base. The measurements of NCCN(S) and Wb reproduced the observed Nd within the measurements uncertainties when the old (1959) Twomey's parameterization was used. The agreement between the measured and calculated Nd was only within a factor of 2 with attempts to use cloud base S, as obtained from the measured Wb, Nd, and NCCN(S). This underscores the yet unresolved challenge of aircraft measurements of S in clouds. Importantly, the vertical evolution of re with height reproduced the observation-based nearly adiabatic cloud base drop concentrations, Na. The combination of these results provides aircraft observational support for the various components of the satellite-retrieved methodology that was recently developed to retrieve NCCN(S) under the base of convective clouds. This parameterization can now be applied with the proper qualifications to cloud simulations and satellite retrievals.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference63 articles.
1. Andreae, M. O.: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions, Atmos. Chem. Phys., 9, 543–556, https://doi.org/10.5194/acp-9-543-2009, 2009. 2. Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva-Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342, https://doi.org/10.1126/science.1092779, 2004. 3. Artaxo, P., Martins, J. V., Yamasoe, M. A., Procópio, A. S., Pauliquevis, T. M., Andreae, M. O., Guyon, P., Gatti, L. V., and Leal, A. M. C.: Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia, J. Geophys. Res.-Atmos., 107, 1–14, https://doi.org/10.1029/2001JD000666, 2002. 4. Baumgardner, D., Strapp, W., and Dye, J. E.: Evaluation of the forward scattering spectrometer probe. Part II: corrections for coincidence and dead-time losses, J. Atmos. Ocean. Tech., 2, 626–632, https://doi.org/10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2, 1985. 5. Baumgardner, D., Jonsson, H., Dawson, W., O'Connor, D., and Newton, R.: The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations, Atmos. Res., 59–60, 251–264, https://doi.org/10.1016/S0169-8095(01)00119-3, 2001.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|