The importance of input data quality and quantity in climate field reconstructions – results from the assimilation of various tree-ring collections

Author:

Franke JörgORCID,Valler Veronika,Brönnimann Stefan,Neukom Raphael,Jaume-Santero FernandoORCID

Abstract

Abstract. Differences between paleoclimatic reconstructions are caused by two factors: the method and the input data. While many studies compare methods, we will focus in this study on the consequences of the input data choice in a state-of-the-art Kalman-filter paleoclimate data assimilation approach. We evaluate reconstruction quality in the 20th century based on three collections of tree-ring records: (1) 54 of the best temperature-sensitive tree-ring chronologies chosen by experts; (2) 415 temperature-sensitive tree-ring records chosen less strictly by regional working groups and statistical screening; (3) 2287 tree-ring series that are not screened for climate sensitivity. The three data sets cover the range from small sample size, small spatial coverage and strict screening for temperature sensitivity to large sample size and spatial coverage but no screening. Additionally, we explore a combination of these data sets plus screening methods to improve the reconstruction quality. A large, unscreened collection generally leads to a poor reconstruction skill. A small expert selection of extratropical Northern Hemisphere records allows for a skillful high-latitude temperature reconstruction but cannot be expected to provide information for other regions and other variables. We achieve the best reconstruction skill across all variables and regions by combining all available input data but rejecting records with insignificant climatic information (p value of regression model >0.05) and removing duplicate records. It is important to use a tree-ring proxy system model that includes both major growth limitations, temperature and moisture.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3