Numerical simulations of ice accretion on wind turbine blades: are performance losses due to ice shape or surface roughness?

Author:

Caccia Francesco,Guardone Alberto

Abstract

Abstract. Ice accretion on wind turbine blades causes both a change in the shape of its sections and an increase in surface roughness. These lead to degraded aerodynamic performances and lower power output. Here, a high-fidelity multi-step method is presented and applied to simulate a 3 h rime icing event on the National Renewable Energy Laboratory 5 MW wind turbine blade. Five sections belonging to the outer half of the blade were considered. Independent time steps were applied to each blade section to obtain detailed ice shapes. The roughness effect on airfoil performance was included in computational fluid dynamics simulations using an equivalent sand-grain approach. The aerodynamic coefficients of the iced sections were computed considering two different roughness heights and extensions along the blade surface. The power curve before and after the icing event was computed according to the Design Load Case 1.1 of the International Electrotechnical Commission. In the icing event under analysis, the decrease in power output strongly depended on wind speed and, in fact, tip speed ratio. Regarding the different roughness heights and extensions along the blade, power losses were qualitatively similar but significantly different in magnitude despite the well-developed ice shapes. It was found that extended roughness regions in the chordwise direction of the blade can become as detrimental as the ice shape itself.

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference70 articles.

1. Abbott, I. H., Von Doenhoff, A. E., and Stivers Jr., L. S.: Summary of airfoil data, Tech. Rep. NACA-TR-824, National Advisory Committee for Aeronautics, https://ntrs.nasa.gov/citations/19930090976 (last access: 6 March 2023), 1945. a, b

2. Aupoix, B. and Spalart, P. R.: Extensions of the Spalart–Allmaras turbulence model to account for wall roughness, Int. J. Heat Fluid Flow, 24, 454–462, 2003. a

3. Battisti, L.: Aerodynamic Performances of Ice Contaminated Rotors, in: Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems, Springer International Publishing, 113–176, https://doi.org/10.1007/978-3-319-05191-8_3, 2015. a

4. Bellosta, T., Parma, G., and Guardone, A.: A robust 3D particle tracking solver for in-flight ice accretion using arbitrary precision arithmetic, in: VIII International Conference on Computational Methods for Coupled Problems in Science and Engineering, CIMNE, 3–5 June 2019, Sitges, Spain, 622–633, ISBN 978-849491945-9, https://hdl.handle.net/11311/1178995 (last access: 6 March 2023), 2019. a

5. Blasco, P., Palacios, J., and Schmitz, S.: Effect of icing roughness on wind turbine power production, Wind Energy, 20, 601–617, https://doi.org/10.1002/we.2026, 2017. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3