Carbonaceous aerosols in Norwegian urban areas

Author:

Yttri K. E.,Dye C.,Braathen O.-A.,Simpson D.,Steinnes E.

Abstract

Abstract. Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM10 and PM2.5) concentrations of elemental carbon (EC), organic carbon (OC), water-insoluble organic carbon (WINSOC), and water-soluble organic carbon (WSOC) are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by volatile and semivolatile OC. Analyses were performed using the thermal optical transmission (TOT) instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan. Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OCp) at the suburban site was equal to (for PM10) or even higher (for PM2.5) than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m−3). This finding indicates that exposure to primary combustion derived OCp could be equally high in residential areas as in a city center. It is demonstrated that OCp from wood burning (OCwood) accounted for almost all OCp at the suburban site in winter, allowing a new estimate of the ratio TCp/levoglucosan for both PM10 and PM2.5. Particulate carbonaceous material (PCM=Organic matter+Elemental matter) accounted for 46–83% of PM10 at the sites studied, thus being the major fraction.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3