Assessing observed and modelled spatial distributions of ice water path using satellite data

Author:

Eliasson S.,Buehler S. A.,Milz M.,Eriksson P.,John V. O.

Abstract

Abstract. The climate models used in the IPCC AR4 show large differences in monthly mean ice water path (IWP). The most valuable source of information that can be used to potentially constrain the models is global satellite data. The satellite datasets also have large differences. The retrieved IWP depends on the technique used, as retrievals based on different techniques are sensitive to different parts of the cloud column. Building on the foundation of Waliser et al. (2009), this article provides a more comprehensive comparison between satellite datasets. IWP data from the CloudSat cloud profiling radar provide the most advanced dataset on clouds. For all its unmistakable value, CloudSat data are too short and too sparse to assess climatic distributions of IWP, hence the need to also use longer datasets. We evaluate satellite datasets from CloudSat, PATMOS-x, ISCCP, MODIS and MSPPS in terms of monthly mean IWP, in order to determine the differences and relate them to the sensitivity of the instrument used in the retrievals. This information is also used to evaluate the climate models, to the extent that is possible. ISCCP and MSPPS were shown to have comparatively low IWP values. ISCCP shows particularly low values in the tropics, while MSPPS has particularly low values outside the tropics. MODIS and PATMOS-x were in closest agreement with CloudSat in terms of magnitude and spatial distribution, with MODIS being the better of the two. Additionally PATMOS-x and ISCCP, which have a temporal range long enough to capture the inter-annual variability of IWP, are used in conjunction with CloudSat IWP (after removing profiles that contain precipitation) to assess the IWP variability and mean of the climate models. In general there are large discrepancies between the individual climate models, and all of the models show problems in reproducing the observed spatial distribution of cloud-ice. Comparisons consistently showed that ECHAM-5 is probably the GCM from IPCC AR4 closest to satellite observations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3