Characteristics of cloud liquid water path from SEVIRI onboard the Meteosat Second Generation 2 satellite for several cloud types

Author:

Kniffka A.,Stengel M.ORCID,Lockhoff M.,Bennartz R.ORCID,Hollmann R.

Abstract

Abstract. In this study the temporal and spatial characteristics of the liquid water path (LWP) of low, middle and high level clouds are analysed using space-based observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument onboard the Meteosat Second Generation 2 (MSG 2) satellite. Both geophysical quantities are part of the CLAAS (CLoud property dAtAset using SEVIRI) data set and are generated by EUMETSAT's Satellite Application Facility on Climate Monitoring (CM SAF). In this article we focus on the statistical properties of LWP, retrieved during daylight conditions, associated with individual cloud types. We analysed the intrinsic variability of LWP, that is, the variability in only cloudy regions and the variations driven by cloud amount. The relative amplitude of the intrinsic diurnal cycle exceeded the cloud amount driven amplitude in our analysed cases. Our results reveal that each cloud type possesses a characteristic intrinsic LWP distribution. These frequency distributions are constant with time in the entire SEVIRI field of view, but vary for smaller regions like Central Europe. Generally the average LWP is higher over land than over sea; in the case of low clouds this amounts to 15–27% in 2009. The variance of the frequency distributions is enhanced as well. Also, the average diurnal cycle of LWP is related to cloud type with the most pronounced relative diurnal variations being detected for low and middle level clouds. Maps of the relative amplitude and the local time of maximum LWP show the variation throughout the SEVIRI field of view.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3