Environmental hazard quantification toolkit based on modular numerical simulations

Author:

Tranter MorganORCID,Steding Svenja,Otto ChristopherORCID,Pyrgaki Konstantina,Hedayatzadeh Mansour,Sarhosis Vasilis,Koukouzas Nikolaos,Louloudis GeorgiosORCID,Roumpos ChristosORCID,Kempka ThomasORCID

Abstract

Abstract. Quantifying impacts on the environment and human health is a critical requirement for geological subsurface utilisation projects. In practice, an easily accessible interface for operators and regulators is needed so that risks can be monitored, managed, and mitigated. The primary goal of this work was to create an environmental hazards quantification toolkit as part of a risk assessment for in-situ coal conversion at two European study areas: the Kardia lignite mine in Greece and the Máza-Váralja hard coal deposit in Hungary, with complex geological settings. A substantial rock volume is extracted during this operation, and a contaminant pool is potentially left behind, which may put the freshwater aquifers and existing infrastructure at the surface at risk. The data-driven, predictive tool is outlined exemplary in this paper for the Kardia contaminant transport model. Three input parameters were varied in a previous scenario analysis: the hydraulic conductivity, as well as the solute dispersivity and retardation coefficient. Numerical models are computationally intensive, so the number of simulations that can be performed for scenario analyses is limited. The presented approach overcomes these limitations by instead using surrogate models to determine the probability and severity of each hazard. Different surrogates based on look-up tables or machine learning algorithms were tested for their simplicity, goodness of fit, and efficiency. The best performing surrogate was then used to develop an interactive dashboard for visualising the hazard probability distributions. The machine learning surrogates performed best on the data with coefficients of determination R2>0.98, and were able to make the predictions quasi-instantaneously. The retardation coefficient was identified as the most influential parameter, which was also visualised using the toolkit dashboard. It showed that the median values for the contaminant concentrations in the nearby aquifer varied by five orders of magnitude depending on whether the lower or upper retardation range was chosen. The flexibility of this approach to update parameter uncertainties as needed can significantly increase the quality of predictions and the value of risk assessments. In principle, this newly developed tool can be used as a basis for similar hazard quantification activities.

Funder

Research Fund for Coal and Steel

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Chemical Engineering

Reference13 articles.

1. Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M.: Optuna: A next-Generation Hyperparameter Optimization Framework, in: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, https://doi.org/10.1145/3292500.3330701, 2019. a, b

2. Bear, J.: Dynamics of Fluids in Porous Media, Dover Books on Physics and Chemistry, Dover, New York, 1988. a

3. Chen, T. and Guestrin, C.: XGBoost: A Scalable Tree Boosting System, in: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '16, ACM, New York, NY, USA, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. a, b

4. Géron, A.: Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, ISBN 9781491962268, 2017. a

5. Goldsim Technology Group: GoldSim User's Guide (Version 14.0), Tech. rep., 2021. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3