Numerical investigations to assess ground subsidence and fault reactivation during underground coal gasification

Author:

Hedayatzadeh Mansour,Sarhosis Vasilis,Gorka Torsten,Hámor-Vidó Mária,Kalmár István

Abstract

Abstract. This paper aims to assess potential environmental impacts associated with commercial-scale application of in situ coal conversion in a target area in Hungary. The site is an environmentally protected forested area. Parametric numerical modelling techniques were employed using a discrete element method (DEM) to evaluate the surface subsidence and fault activation during mining processes. The Mohr–Coulomb elastic–plastic material model adopted to simulate rock formations. Zero-thickness interfaces with friction and cohesive characteristics were employed to simulate geological faults. A sensitivity study on rock formations and fault properties was conducted to address the importance of geological parameters that have an impact on surface subsidence as well as fault activation, which could in turn result in pollutant migration from the deep coal seams to the surface. The analysis of the results demonstrated that surface subsidence is affected by the average Young's modulus of the geological strata, whereby the activation of the faults is influenced by the friction angle between faults. Also, it was found that shallower seams are more likely to produce surface subsidence; i.e. as excavation depth increases, the surface subsidence decreases. Finally, computational outputs from this work were used to develop the web-based and interactive Environmental Hazards and Risk Management Toolkit (EHRM) for planning and decision-making processes during in situ coal conversion.

Funder

European Commission

Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Publisher

Copernicus GmbH

Subject

General Chemical Engineering

Reference14 articles.

1. Advani, S. H., Lee, J. K., Min, O. K., Aboustit, B. L., Chen, S. M., and Lee, S. C.: Stress mediated responses associated with UCG cavity and subsidence prediction modelling, in: Proceedings of the ninth annual underground coal gasification symposium, 282–292, Bloomingdale, IL, USA, https://digital.library.unt.edu/ark:/67531/metadc1065489/m2/1/high_res_d/5295596.pdf (last access: 1 November 2022), 1983.

2. Fodor, B.: Magyarország szénhezkötött metánvagyona., Coalbed methane in-place resources in Hungary, Földtani Közlöny 136/4, 573–590, 2006.

3. Itasca Consulting Group Inc: User Manual for 3DEC (Version 7.0), https://www.itascacg.com/software/3DEC (last access: 1 November 2022), https://doi.org/10.5281/zenodo.7373574, 2021.

4. Kempka, T., Nakaten, B., De Lucia, M., Nakaten, N., Otto, C., Pohl, M., Tillner, E., and Kühn, M.: Flexible Simulation Framework to Couple Processes in Complex 3D Models for Subsurface Utilization Assessment, Energ. Proc., 97, 494–501, https://doi.org/10.1016/j.egypro.2016.10.058, 2016.

5. Kempka, T., Steding, S., Tranter, M., Otto, C., Gorka, T., Hámor-Vidó, M., Basa, W., Kapusta, K., and Kalmár, I.: Probability of contaminant migration from abandoned in-situ coal conversion reactors, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11204, https://doi.org/10.5194/egusphere-egu22-11204, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3