Probability of contaminant migration from abandoned in-situ coal conversion reactors

Author:

Kempka ThomasORCID,Steding SvenjaORCID,Tranter MorganORCID,Otto ChristopherORCID,Gorka Torsten,Hámor-Vidó Mária,Basa Wioleta,Kapusta Krzysztof,Kalmár István

Abstract

<p>In the context of a potential utilisation of coal resources located in the Mecsek mountain area in Southern Hungary (Püspöki et al.. 2012), an assessment of groundwater pollution resulting from a potential water-borne contaminant pool remaining in in-situ coal conversion reactors after site abandonment has been undertaken. The respective contaminants may be of organic (i.e., phenols, benzene, polycyclic aromatic hydrocarbons, etc.) and inorganic nature (i.e., ammonia, mercury, zinc, cyanide, heavy metals, etc.), whereby data for the Mecsek coal has been derived from extensive laboratory testing.</p><p>The probability assessment was carried out by means of numerical simulations of fluid flow as well as contaminant and heat transport including retardation using the TRANsport Simulation Environment (Kempka, 2020). Hereby, the main uncertainties, e.g., changes in hydraulic gradient and hydraulic contributions of the complex regional and local fault systems in the study area, were assessed in a deterministic way to identify the parameters relevant for the overall sensitivity study. Using Monte-Carlo analyses and Latin hypercube sampling, the uncertainty bandwidths of water table, retardation factors, dispersion coefficients, hydraulic conductivities of aquitards, faults and aquifers as well as groundwater recharge were considered.</p><p>The simulation results demonstrate that fluid flow via the regional faults is the main driver for a potential contamination of the shallow groundwater aquifers. Consequently, the numerical simulation results on potential fault reactivation due to coal extraction (Hedayatzadeh et al., 2022) were taken into account in view of probable hydraulic conductivity changes in the regional fault systems and the rock matrix surrounding the abandoned reactors. The probabilities of groundwater aquifer contamination within a time horizon of 50 years are presented based on maximum contaminant concentrations, cumulative mass balances as well as migration distances of the contaminant plume. The results of this analysis are essential for mining authorities as well as potential stakeholders to improve the understanding on potential environmental impacts, and have been integrated into a specific toolkit for risk assessment (Tranter et al., 2022) for that purpose.</p><p><strong>References</strong></p><p>Hedayatzadeh, M. et al. (2022) Ground subsidence and fault reactivation during in-situ coal conversion assessed by numerical simulations, https://meetingorganizer.copernicus.org/EGU22/EGU22-11736.html</p><p>Kempka, T. (2020) Verification of a Python-based TRANsport Simulation Environment for density-driven fluid flow and coupled transport of heat and chemical species. Adv. Geosci. 54, 67–77. <span>https://doi.org/10.5194/adgeo-54-67-2020</span></p><div> <div> <p>Püspöki, Z. et al. (2012) Stratigraphy and deformation history of the Jurassic coal bearing series in the Eastern Mecsek (Hungary). International Journal of Coal Geology 102, 35–51. https://doi.org/10.1016/j.coal.2012.07.009</p> </div> </div><p><span>Tranter, M. et al. (2022) </span>Environmental hazard quantification toolkit based on modular numerical simulations, https://meetingorganizer.copernicus.org/EGU22/EGU22-10115.html</p><p> </p>

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3