The impact of biogenic carbon emissions on aerosol absorption in Mexico City
Author:
Marley N. A.,Gaffney J. S.,Tackett M. J.,Sturchio N. C.,Heraty L.,Martinez N.,Hardy K. D.,Machany-Rivera A.,Guilderson T.,MacMillan A.,Steelman K.
Abstract
Abstract. In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption Ångstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from 14C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The 13C/12C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.
Publisher
Copernicus GmbH
Reference53 articles.
1. Allen, D.: Gulf Coast Aerosol Research and Characterization Program (Houston Supersite). Progress Report, August 2001, Environmental Protection Agency Technology Transfer Network Ambient Monitoring Technology Information Center, Houston Supersite Project Information, http://www.epa.gov/ttnamti1/houprog.html, 2001. 2. Arnott, W. P., Hamasha, K., Moosmuller, H., Sheridan, P. J., and Ogren, J. A.: Towards Aerosol Light-Absorption Measurements with a 7-Wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3-Wavelength Nephelometer, Aerosol Sci. Technol., 39, 17–29, 2005. 3. Bench, G., Fallon, S., Schichtel, B., Malm, W., and McDade, C.: Relative contributions of fossil and contemporary carbon sources to PM$_2.5$ aerosols at nine Interagency Monitoring for Protection of Visual Environments (IMPROVE) network sites, J. Geophys. Res., 112, D10205, https://doi.org/10.1029/2006JD007708, 2007. 4. Bergstrom, R. W., Russell, P. B., and Hignett, P. B.: The wavelength dependence of black carbon particles: Predictions and results from TARFOX experiment and implications for the aerosol single scattering albedo, J. Atmos. Sci., 59, 567–577, 2002. 5. Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, 2007.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|