Analysis of different weighting functions of observations for GPS and Galileo PPP

Author:

Kiliszek DamianORCID,Araszkiewicz AndrzejORCID,Kroszczyński Krzysztof

Abstract

<p>At present, significant development of the positioning methods using the Global Navigation Satellite System (GNSS) can be seen. One of the most developed methods is the absolute Precise Point Positioning (PPP) method. This can be particularly seen using multi-GNSS measurements. The development of multi-GNSS increases the number of satellites observed and increases the accuracy of the products, but also creates new requirements for observation modeling. Obtaining the correct values, ​​of the estimated parameters, requires the appropriate determination of the deterministic model as well as the stochastic model. Currently, the deterministic model is well known. In contrast, the stochastic model is not fully known and still requires a number of studies. Stochastic modeling is based on determining the covariance matrix and which can be modeled using a weighting function that takes into account the elevation angle of the observed satellite. ​</p><p>In our analysis, we focus on studies on the weighting functions of GNSS observations for the PPP method. Analysis was performed on the Multi-GNSS Pilot Project (MGEX) stations which were characterized by global distribution and various equipment in 2021. Studies were conducted for the GPS‑only, Galileo-only, and GPS+Galileo constellations, with particular emphasis on the Galileo observations, which has achieved significant progress in recent years. Eight different observation weighting models have been selected for analysis: one of them assumes that all observations have the same precision, without dependence on the elevation angle; for the other used functions, the observation precision value depends on the elevation angle. Parameters such as accuracy, convergence time, zenith path delay (ZPD), and inter-system bias (ISB) are analyzed.</p><p>Based on the tests performed, we show that, depending on the solutions adopted (i.e. GPS-only, Galileo-only, GPS+Galileo), the best results were obtained for different weighting functions. We have shown that using different weighting functions have no impact on the horizontal component but a visible impact on the vertical component,  the tropospheric delay, and the convergence time. Also, we choose the best functions for GPS-only and Galileo-only and used them for the GPS+Galileo solution. For this new approach obtained a shorter convergence time and higher accuracy of the ZPD. More information and results will be presented at the conference.</p>

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3