Comprehensive Analysis on GPS Carrier Phase under Various Cutoff Elevation Angles and Its Impact on Station Coordinates’ Repeatability

Author:

Nistor Sorin1ORCID,Suba Norbert-Szabolcs1ORCID,Buda Aurelian Stelian1ORCID,Maciuk Kamil2ORCID,El-Mowafy Ahmed3ORCID

Affiliation:

1. Faculty of Construction, Cadastre and Architecture, University of Oradea, 410058 Oradea, Romania

2. Department of Integrated Geodesy and Cartography, AGH University of Krakow, 30-059 Krakow, Poland

3. School of Earth and Planetary Science, Curtin University, Perth 6845, Australia

Abstract

When processing the carrier phase, the global navigation satellite system (GNSS) grants the highest precision for geodetic measurements. The analysis centers (ACs) from the International GNSS Service (IGS) provide different data such as precise clock data, precise orbits, reference frame, ionosphere and troposphere data, as well as other geodetic products. Each individual AC has its own strategy for delivering the abovementioned products, with one of the key elements being the cutoff elevation angle. Typically, this angle is arbitrarily chosen using generic values without studying the impact of this choice on the obtained results, in particular when very precise positions are considered. This article addresses this issue. To this end, the article has two key sections, and the first is to evaluate the impact of using the two different cutoff elevation angles that are most widely used: (a) 3 degrees cutoff and (b) 10 degrees cutoff elevation angle. This analysis is completed in two major parts: (i) the analysis of the root mean square (RMS) for the carrier phase and (ii) the analysis of the station position in terms of repeatability. The second key section of the paper is a comprehensive carrier phase analysis conducted by adopting a new approach using a mean of the 25-point average RMS (A-RMS) and the single-point RMS and using an ionosphere-free linear combination. By using the ratio between the 25-point average RMS and the single-point RMS we can define the type of scatter that dominates the phase solution. The analyzed data span a one-year period. The tested GNSS stations belong to the EUREF Permanent Network (EPN) and the International GNSS Service (IGS). These comprise 55 GNSS stations, of which only 23 GNSS stations had more than 95% data availability for the entire year. The RMS and A-RMS are analyzed in conjunction with the precipitable water vapor (PWV), which shows clear signs of temporal correlation. Of the 23 GNSS stations, three stations show an increase of around 50% of the phase RMS when using a 3° cutoff elevation angle, and only four stations have a difference of 5% between the phase RMS when using both cutoff elevation angles. When using the A-RMS, there is an average improvement of 37% of the phase scatter for the 10° cutoff elevation angle, whereas for the 3° cutoff elevation angle, the improvement is around 33%. Based on studying this ratio, four stations indicate that the scatter is dominated by the stronger-than-usual dominance of long-period variations, whereas the others show short-term noise. In terms of station position repeatability, the weighted root mean square (WRMS) is used as an indicator, and the results between the differences of using a 3° and 10° cutoff elevation angle strategy show a difference of −0.16 mm for the North component, −0.21 mm for the East component and a value of −0.75 mm for the Up component, indicating the importance of using optimal cutoff angles.

Funder

University of Oradea

Publisher

MDPI AG

Reference51 articles.

1. Influence of mapping function parameters on global GPS network analyses: Comparisons between NMF and IMF;Vey;Geophys. Res. Lett.,2006

2. Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI;Tesmer;J. Geod.,2007

3. The impact of tropospheric mapping function on PPP determination for one-month period;Nistor;Acta Geodyn. Geomater,2020

4. An improved weighting strategy for tropospheric delay estimation with real-time single-frequency precise positioning;Bahadur;Earth Sci. Inform.,2022

5. Using Different Mapping Function In GPS Processing For Remote Sensing The Atmosphere;Nistor;J. Appl. Eng. Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3