Abstract
The theory of alternative stable states and tipping points has garnered a lot of attention in recent years. However, typically the ecosystem models that predict tipping behaviors do not resolve space explicitly. Ecosystems being inherently spatial, it is important to understand the implication of incorporating spatial processes in theoretical models and their applicability to real world. In this talk, I will illustrate several pattern formation phenomena that may arise when incorporating spatial dynamics in models exhibiting alternative stable state. For this, we use simple mathematical models of savannas to study the behavior of these spatial ecosystems in the face of environmental change. Model analyses presented here challenge the simplistic notion of tipping and lay down a way forward regarding studying ecosystem response to global change.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献