Abstract
Abstract. The assessment of Tropical Cyclones (TC) statistics requires the direct, objective, and automatic detection and tracking of TCs in reanalyses and model simulations. Research groups have independently developed numerous algorithms during recent decades in order to answer that need. Today, there is a large number of algorithms, often referred to as trackers, that aim to detect the positions of tropical cyclones in gridded datasets. This paper compares four trackers with very different formulations in detail. We assess their performances by tracking tropical cyclones in the ERA5 reanalysis and by comparing the outcome to the IBTrACS observations database. The first section of the paper finds typical detection rates of the trackers ranging from 75 to 85 %. At the same time, false alarm rates (FAR) greatly vary across the four trackers and can sometimes exceed the number of detected genuine cyclones. Based on the finding that many of these false alarms are extra-tropical cyclones, we adapt two existing filtering methods common to all trackers. Both post-treatments dramatically impact FARs, which range from 9 to 36 % in our final catalogs of tropical cyclones tracks. We then show that different traditional metrics can be very sensitive to the particular choice of the tracker, which is particularly true for the TC frequencies and their durations. By contrast, all trackers identify a robust negative bias in ERA5 tropical cyclones intensities, a result already noted in previous studies. We conclude by advising against using as many trackers as possible and averaging the results. A more efficient approach would involve selecting one or a few trackers with well-known properties.
Funder
Centre National de la Recherche Scientifique
Sorbonne Université
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献