Abstract
<p>Severe Atlantic winter storms are affecting densely populated regions of Europe (e.g. UK, France, Germany, etc.). Consequently, different parts of the society, financial industry (e.g., insurance) and last but not least the general public are interested in skilful forecasts for the upcoming storm season (usually December to March). To allow for a best possible use of steadily improved seasonal forecasts, the understanding which factors contribute to realise forecast skill is essential and will allow for an assessment whether to expect a forecast to be skilful or not.</p><p>This study analyses the predictability of the seasonal forecast model of the UK MetOffice, the GloSea5. Windstorm events are identified and tracked following Leckebusch et al. (2008) via the exceedance of the 98<sup>th</sup> percentile of the near surface wind speed.</p><p>Seasonal predictability of windstorm frequency in comparison to observations (based e.g., on ERA5 reanalysis) are calculated and different statistical methods (skill scores) are compared.</p><p>Large scale patterns (e.g., NAO, AO, EAWR, etc.) and dynamical factors (e.g., Eady Growth Rate) are analysed and their predictability is assessed in comparison to storm frequency forecast skill. This will lead to an idea how the forecast skill of windstorms is depending on the forecast skill of forcing factors conditional to the phase of large-scale variability modes. Thus, we deduce information, which factors are most important to generate seasonal forecast skill for severe extra-tropical windstorms.</p><p>The results can be used to get a better understanding of the resulting skill for the upcoming windstorm season.</p>
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献