Large-scale circulation patterns and their influence on European winter windstorm predictions

Author:

Degenhardt LisaORCID,Leckebusch Gregor C.ORCID,Scaife Adam A.ORCID

Abstract

AbstractSevere winter windstorms are amongst the most damaging weather events for Europe and show significant interannual variability. While surface variables (temperature, precipitation) have been successfully predicted for some time now, predictability of severe windstorms caused by extra-tropical cyclones remains less well explored. This study investigates windstorm prediction skill of the UK Met Office Global Seasonal Forecast System Version 5 (GloSea5) for the Northeast-Atlantic and European region. Based on an objective Lagrangian tracking of severe, damage relevant windstorms, three storm parameters are analysed: windstorm frequency and two intensity measures. Firstly, skill based on direct tracking of simulated windstorms is diagnosed. Significant positive skill for storm frequency and intensity is found over an extended area at the downstream end of the storm track, i.e., from the UK to southern Scandinavia. The skill for frequency agrees well with previous studies for older model versions, while the results of event-based intensity are novel. Receiver Operating Characteristic Curves for three smaller regions reveal significant skill for high and low storm activity seasons. Second, skill of windstorm characteristics based on their multi-linear regressions to three dominant large-scale circulation patterns [i.e., the North Atlantic Oscillation (NAO), the Scandinavian Pattern (SCA), and the East-Atlantic Pattern (EA)] are analysed. Although these large-scale patterns explain up to 80% of the interannual variance of windstorm frequency and up to 60% for intensity, the forecast skill for the respectively linear-regressed windstorms do not show systematically higher skill than the direct tracking approach. The signal-to-noise ratio of windstorm characteristics (frequency, intensity) is also quantified, confirming that the signal-to-noise paradox extends to windstorm predictions.

Funder

Natural Environment Research Council

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3