A Revised Complex Refractive Index Model for Inferring the Permittivity of Heterogeneous Concrete Models

Author:

Zadhoush Hossain,Giannopoulos Antonios,Giannakis Iraklis

Abstract

<p>The estimation of the bulk permittivity of heterogeneous mixtures is of great interest for many Ground Penetrating Radar (GPR) and electromagnetic sensing applications [1], [2]. The most used method for estimating the bulk permittivity is the Complex Refractive Index Model (CRIM). The simplicity of this method is one its advantages however, the accuracy of the permittivity estimation has not been tested. Here, the CRIM model’s shape factor is examined and optimised in order to achieve a more accurate concrete bulk permittivity estimation. The concrete components are aggregate particles, cement particles, air-voids and moisture content; and they are randomly distributed with different volume percentages to produce various combinations. These combinations are modelled using the Finite-Difference Time-Domain (FDTD) method as it is an accurate and computationally efficient method [3]. The numerical modelling is then used to predict the bulk permittivity allowing to fine-tune CRIM model’s shape factor. The models are modelled in 3D and a GSSI-like antenna structure is used as the transmitting source [4]. The permittivity estimation uses an accurate time-zero method, which increases the accuracy of the estimated bulk permittivity hence, the shape factor [5], [6]. The results have shown that the optimised CRIM model over-performs the original CRIM model shape factor therefore, a better and more accurate bulk permittivity estimation is achieved for concrete mixtures.</p><p> </p><p><strong>References </strong></p><p>[1] Daniels, D. J., (2004), Ground Penetrating Radar, 2nd ed. London, U.K., Institution of Engineering and Technology.</p><p>[2] Annan, A. P., (2005), Ground Penetrating Radar,  in Investigations in Geophysics, Society of Exploration Geophysicists, pp. 357-438.</p><p>[3] Taflove, A., Hagness, S. C., (2005), Computational electromagnetic: The Finite-Difference Time-Domain Method, Artech House, Norwood.</p><p>[4] Warren, C., & Giannopoulos, A., (2011), Creating Finite-Difference Time-Domain Models of Commercial Ground Penetrating Radar Antenna Using Taguchi’s Optimization Method, Geophysics, 76(2), G37-G47.</p><p>[5] Zadhoush, H., Giannopoulos, A., Giannakis, I., (2020), Optimising GPR time-zero adjustment and two-way travel time wavelet measurement using a realistic 3D numerical model, Near Surface Geophysics, Under review (Minor revisions).</p><p>[6] Zadhoush, H., (2020), Numerical Modelling of Ground Penetrating Radar for Optimization of the Time-zero Adjustment and Complex Refractive Index Model, PhD Thesis Submitted at The University of Edinburgh.</p>

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3