Ground-Penetrating Radar and Electromagnetic Induction: Challenges and Opportunities in Agriculture

Author:

Pathirana Sashini1ORCID,Lambot Sébastien2ORCID,Krishnapillai Manokarajah1,Cheema Mumtaz1,Smeaton Christina1,Galagedara Lakshman1ORCID

Affiliation:

1. School of Science and the Environment, Memorial University of Newfoundland, Corner Brook, NL A2H 5G4, Canada

2. Earth and Life Institute, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

Abstract

Information on the spatiotemporal variability of soil properties and states within the agricultural landscape is vital to identify management zones supporting precision agriculture (PA). Ground-penetrating radar (GPR) and electromagnetic induction (EMI) techniques have been applied to assess soil properties, states, processes, and their spatiotemporal variability. This paper reviews the fundamental operating principles of GPR and EMI, their applications in soil studies, advantages and disadvantages, and knowledge gaps leading to the identification of the difficulties in integrating these two techniques to complement each other in soil data studies. Compared to the traditional methods, GPR and EMI have advantages, such as the ability to take non-destructive repeated measurements, high resolution, being labor-saving, and having more extensive spatial coverage with geo-referenced data within agricultural landscapes. GPR has been widely used to estimate soil water content (SWC) and water dynamics, while EMI has broader applications such as estimating SWC, soil salinity, bulk density, etc. Additionally, GPR can map soil horizons, the groundwater table, and other anomalies. The prospects of GPR and EMI applications in soil studies need to focus on the potential integration of GPR and EMI to overcome the intrinsic limitations of each technique and enhance their applications to support PA. Future advancements in PA can be strengthened by estimating many soil properties, states, and hydrological processes simultaneously to delineate management zones and calculate optimal inputs in the agricultural landscape.

Funder

Natural Sciences and Engineering Research Council of Canada

Industry, Energy and Innovation of the Government of Newfoundland and Labrador

Grenfell Campus, Memorial University of Newfoundland

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3