Atmospheric OH reactivities in the Pearl River Delta – China in summer 2006: measurement and model results

Author:

Lou S.,Holland F.,Rohrer F.,Lu K.,Bohn B.,Brauers T.,Chang C.C.,Fuchs H.,Häseler R.,Kita K.,Kondo Y.,Li X.,Shao M.,Zeng L.,Wahner A.,Zhang Y.,Wang W.,Hofzumahaus A.

Abstract

Abstract. Total atmospheric OH reactivities (kOH) have been measured as reciprocal OH lifetimes by a newly developed instrument at a rural site in the densely populated Pearl River Delta (PRD) in Southern China in summer 2006. The deployed technique, LP-LIF, uses laser flash photolysis (LP) for artificial OH generation and laser-induced fluorescence (LIF) to measure the time-dependent OH decay in samples of ambient air. The reactivities observed at PRD covered a range from 10 s−1 to 120 s−1, indicating a large load of chemical reactants. On average, kOH exhibited a pronounced diurnal profile with a mean maximum value of 50 s−1 at daybreak and a mean minimum value of 20 s−1 at noon. The comparison of reactivities calculated from measured trace gases with measured kOH reveals a missing reactivity of about a factor of 2 at day and night. The reactivity explained by measured trace gases was dominated by anthropogenic pollutants (e.g., CO, NOx, light alkenes and aromatic hydrocarbons) at night, while it was strongly influenced by local, biogenic emissions of isoprene during the day. Box model calculations initialized by measured parameters reproduce the observed OH reactivity well and suggest that the missing reactivity is contributed by unmeasured, secondary chemistry products (mainly aldehydes and ketones) that were photochemically formed by hydrocarbon oxidation. Overall, kOH was dominated by organic compounds, which had a maximum contribution of 85% in the afternoon. The paper demonstrates the usefulness of direct reactivity measurements, emphasizes the need for direct measurements of oxygenated organic compounds in atmospheric chemistry studies, and discusses uncertainties of the modelling of OVOC reactivities.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference73 articles.

1. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.

2. Apel, E. C., Brauers, T., Koppmann, R., Bandowe, B., Bo{ß meyer}, J., Holzke, C., Tillmann, R., Wahner, A., Wegener, R., Brunner, A., Jocher, M., Ruuskanen, T., Spirig, C., Steigner, D., Steinbrecher, R., Alvarez, E. G., Müller, K., Burrows, J. P., Schade, G., Solomon, S. J., Ladstätter-Weiß enmayer, A., Simmonds, P., Young, D., Hopkins, J. R., Lewis, A. C., Legreid, G., Reimann, S., Hansel, A., Wisthaler, A., Blake, R. S., Ellis, A. M., Monks, P. S., and Wyche, K. P.: Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber, J. Geophys. Res., 113, D20307, https://doi.org/10.1029/2008JD009865, 2008.

3. Bohn, B., Corlett, G K., Gillmann, M., Sanghavi, S., Stange, G., Tensing, E., Vrekoussis, M., Bloss, W J., Clapp, L J., Kortner, M., Dorn, H.-P., Monks, P S., Platt, U., Plass-Dülmer, C., Mihalopoulos, N., Heard, D E., Clemitshaw, K C., Meixner, F X., Prevot, A. S H., and Schmitt, R.: Photolysis frequency measurement techniques: results of a comparison within the ACCENT project, Atmos. Chem. Phys., 8, 5373–5391, https://doi.org/10.5194/acp-8-5373-2008, 2008.

4. Bradsher, K.: Trucks Power China's Econonomy, at a Suffocating Cost, The New York Times – Online Edition, NY, USA, 8 December, 2007.

5. Brasseur, G. P., Prinn, R. G., and Pszenny, A. P. (eds.): Atmospheric Chemistry in a Changing World, The IGBP Series, Springer, Berlin, Germany, 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3